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1 Mecânica

1.1 Questão 41 — Força mínima para iminência de movimento rampa acima

Um bloco de massa m encontra-se em repouso sobre um plano inclinado de ângulo θ

com a horizontal. Uma força F⃗ é aplicada ao bloco, formando ângulo φ com a direção

do plano, como indicado na figura. O coeficiente de atrito estático entre o bloco e o

plano é µ. Determine a intensidade mínima da força F⃗ necessária para colocar o bloco

na iminência de subir a rampa.

1) Equilíbrio de forças

Projetando as forças ao longo dos eixos x̂ (paralelo à rampa, apontando para cima) e ŷ

(normal ao plano):

F cosφ−mg sin θ − µN = 0 (1)

N −mg cos θ + F sinφ = 0 ⇒ N = mg cos θ − F sinφ (2)

Substituindo (2) em (1), obtemos:

F cosφ = mg sin θ + µ
(
mg cos θ − F sinφ

)
. (3)

2) Expressão para a força aplicada

Da equação (3), resulta:
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F (φ) = mg(sin θ + µ cos θ)
cosφ+ µ sinφ . (4)

3) Maximização do denominador via Cauchy–Schwarz

O denominador pode ser escrito como produto escalar:

cosφ+ µ sinφ = (cosφ, sinφ) · (1, µ).

Pela desigualdade de Cauchy–Schwarz :

cosφ+ µ sinφ ≤
√

1 + µ2. (5)

A igualdade em (5) ocorre quando

tanφ⋆ = µ, (6)

isto é,

cosφ⋆ = 1√
1 + µ2 , sinφ⋆ = µ√

1 + µ2 .

4) Força mínima

Substituindo o valor máximo do denominador (5) em (4), temos:

Fmin = mg(sin θ + µ cos θ)√
1 + µ2 . (7)

Portanto, a força mínima aplicada que coloca o bloco na iminência de subir a rampa é

dada por (7), atingida quando (6) vale.

Alternativa correta: D.
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1.2 Questão 42 — Cilindro com atrito

Uma prancha de madeira, com comprimento L = 1,0 m e massa m = 0,4 kg, possui um

cilindro maciço e homogêneo de aço, com massa M = 0,6 kg, localizado na extremidade

direita da prancha. O sistema está em repouso sobre um plano horizontal liso. Uma

força constante F⃗ = (20 N) x̂ é aplicada à prancha, fazendo com que os objetos comecem

a se mover acelerados. O cilindro rola suavemente, sem escorregar, sobre a prancha,

devido à presença de atrito entre eles. Desprezando o atrito entre a prancha e a

superfície horizontal, bem como qualquer força de resistência do ar, determine o

intervalo de tempo, em segundos, que o cilindro levará para cair da prancha, ou seja,

para atingir a extremidade oposta e deixar de estar em contato com ela.

(A) 0,1 s

(B) 0,2 s

(C) 0,3 s

(D) 0,4 s

(E) 0,5 s

1) Definição das variáveis e forças

Seja ap a aceleração da prancha (para a direita) e ac a aceleração do centro do cilindro

(para a direita), ambas medidas no referencial inercial do solo. Seja f a força de atrito
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horizontal exercida pela prancha sobre o cilindro (no ponto de contato). Pela ação e

reação, a prancha sofre −f da parte do cilindro.

Para o cilindro maciço homogêneo, momento de inércia em relação ao centro:

I = 1
2MR2. (8)

Não precisamos do valor de R explicitamente, apenas das relações de rotação/translação.

2) Equações de movimento

Equilíbrio (segunda lei) para a prancha (força total horizontal):

F − f = map. (9)

Equação de translação para o cilindro:

f = Mac. (10)

Equação de rotação para o cilindro (torque causado por f):

fR = Iα =
(1

2MR2
)
α. (11)

Condição de rolamento sem escorregar entre cilindro e prancha: a velocidade

do ponto de contato do cilindro iguala a velocidade da prancha. Em termos

das acelerações:

ac − ap = −Rα. (12)

(A escolha do sinal garante consistência: se a prancha acelera mais que o cilindro, o

contato induz uma rotação que satisfaz (12).)

3) Eliminação das incógnitas

Da (11) e de (12) obtemos:

fR = 1
2MR2α ⇒ f = 1

2MRα.
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Usando (12) α = −(ac − ap)/R, resulta

f = −1
2M(ac − ap). (13)

Por outro lado, pela translação do cilindro (10):

f = Mac. (14)

Igualando (13) e (14):

Mac = −1
2M(ac − ap).

Dividindo por M e rearranjando:

ac = −1
2ac + 1

2ap ⇒ 3
2ac = 1

2ap ⇒ ac = 1
3ap.

Substituindo (1.2) em (9) e usando (10) (f = Mac):

F −Mac = map.

Como ac = ap/3, obtemos

F −M
ap

3 = map ⇒ F = ap

(
m+ M

3

)
.

Logo a aceleração da prancha:

ap = F

m+ M

3

= 3F
3m+M

. (15)

E, pela (1.2),

ac = ap

3 = F

3m+M
. (16)

4) Aceleração relativa e tempo até cair

A aceleração relativa entre prancha e cilindro (aceleração com que a prancha “afasta-se”

do cilindro) é

arel = ap − ac = ap − ap

3 = 2
3ap.
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Usando (15):

arel = 2
3 · 3F

3m+M
= 2F

3m+M
. (17)

Inicialmente a velocidade relativa é zero (sistema parte do repouso). A distância relativa

a percorrer para que o cilindro passe da extremidade direita até a esquerda da prancha é

L. Para movimento uniformemente acelerado, o tempo t satisfaz L = 1
2arelt

2, portanto

t =
√

2L
arel

=
√

2L(3m+M)
2F =

√
(3m+M)L

F
. (18)

5) Substituição numérica

Dados: m = 0,4 kg, M = 0,6 kg, L = 1,0 m, F = 20 N.

Calcule 3m+M :

3m+M = 3(0,4) + 0,6 = 1,2 + 0,6 = 1,8 kg.

Substituindo em (18):

t =
√

(3m+M)L
F

=
√

1,8 × 1,0
20 =

√
1,8
20 =

√
0,09 = 0,30 s.

Resposta: t = 0,3 s. (Alternativa C.)

1.3 Questão 43 - Trabalho de uma força de resistência

Um projétil de massa m é lançado verticalmente para cima a partir da posição z = 0

com velocidade inicial v⃗ = v0ẑ (v0 > 0) no instante t = 0. Além da força gravitacional,

atua sobre ele uma força de resistência do ar proporcional à velocidade: F⃗ = −βmv⃗,

onde β > 0 é o parâmetro de amortecimento. A aceleração da gravidade é g⃗ = −gẑ.

Determine o trabalho realizado pela força de resistência desde o lançamento até a altura

máxima.

Solução:

A força de resistência é:

F⃗r = −βmv⃗ = −βmvẑ.
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O trabalho realizado pela força de resistência até a altura máxima é:

Wr =
∫ zmax

0
F⃗r · dz⃗ = −βm

∫ zmax

0
v dz.

A equação do movimento é :

m
dv

dt
= −mg − βmv ⇒ dv

dt
+ βv = −g.

Solução da equação diferencial:

dv

dt
+ βv = −g ⇒ dv

dt
= −g − βv

dv

g + βv
= −dt

∫ dv

g + βv
= −

∫
dt

ln (g + βv)
β

= −t+ C

Usando as condições de contorno do problema (quando t = 0 e v = vo) :

C = ln (g + βv0)
β

ln (g + βv)
β

= −t+ ln (g + βv0)
β

ln (g + βv)
β

− ln (g + βv0)
β

= −t

ln (g + βv) − ln (g + βv0) = −βt

ln

[
(g + βv)
(g + βv0)

]
= −βt
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(g + βv)
(g + βv0)

= e−βt

(g + βv) = (g + βv0) e−βt

βv = (g + βv0) e−βt − g

v(t) =
(
v0 + g

β

)
e−βt − g

β
.

Altura máxima ocorre em tmax tal que v(tmax) = 0 :

0 =
(
v0 + g

β

)
e−βtmax − g

β
⇒ e−βtmax = g/β

v0 + g/β
⇒ tmax = 1

β
ln
(

1 + βv0

g

)
.

O trabalho da força de resistência:

Wr = −βm
∫ tmax

0
v2(t) dt = −βm

∫ tmax

0

[(
v0 + g

β

)
e−βt − g

β

]2

dt.

Wr = −βm
∫ tmax

0

[(
v0 + g

β

)
e−βt − g

β

]2

dt

Wr = −βm
∫ tmax

0

(v0 + g

β

)2

e−2βt − 2
(
v0 + g

β

)
g

β
e−βt +

(
g

β

)2
dt

= −βm

(v0 + g

β

)2 ∫ tmax

0
e−2βtdt− 2

(
v0 + g

β

)
g

β

∫ tmax

0
e−βtdt+

(
g

β

)2 ∫ tmax

0
dt


∫ tmax

0
e−2βtdt = 1 − e−2βtmax

2β ,∫ tmax

0
e−βtdt = 1 − e−βtmax

β
,∫ tmax

0
dt = tmax.

Integrando e substituindo tmax e e−βtmax :
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tmax = 1
β

ln
(

1 + βv0

g

)

1 − e−2βtmax = 1 − e−2β( 1
β

ln(1+ βv0
g ))

1 − e−2βtmax = 1 − e− ln(1+ βv0
g )2

1 − e−2βtmax = 1 −
(

1 + βv0

g

)−2

1 − e−2βtmax = 1 − 1(
1 + βv0

g

)2

1 − e−2βtmax =

(
1 + βv0

g

)2
− 1(

1 + βv0
g

)2

1 − e−2βtmax =
1 + 2βv0

g
+ β2v2

0
g2 − 1(

1 + βv0
g

)2

1 − e−2βtmax =
2βv0

g
+ β2v2

0
g2(

1 + βv0
g

)2

∫ tmax

0
e−2βtdt = 1 − e−2βtmax

2β = 1
2β

[
2βv0

g
+ β2v2

0
g2

]
(

β
g

)2 ( g
β

+ v0
)2

∫ tmax

0
e−2βtdt = g2

2β3

[
2βv0

g
+ β2v2

0
g2

]
(
v0 + g

β

)2 . ✓

1 − e−βtmax = 1 − e−β( 1
β

ln(1+ βv0
g ))

1 − e−βtmax = 1 − eln(1+ βv0
g )−1
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1 − e−βtmax = 1 −
(

1 + βv0

g

)−1

1 − e−βtmax = 1 − 1(
1 + βv0

g

)

1 − e−βtmax =

(
1 + βv0

g

)
− 1(

1 + βv0
g

)

1 − e−βtmax =

(
βv0

g

)
(
1 + βv0

g

)

1 − e−βtmax =

(
βv0

g

)
(
1 + βv0

g

) =

(
βv0

g

)
β
g

(
v0 + g

β

) = v0(
v0 + g

β

)
∫ tmax

0
e−βtdt = 1 − e−βtmax

β
=

v0
(v0+ g

β )
β

= v0

β
(
v0 + g

β

)
∫ tmax

0
e−βtdt = v0

β
(
v0 + g

β

) . ✓

Wr = −βm


�
���

��
(
v0 + g

β

)2
 g2

2β3

[
2βv0

g
+ β2v2

0
g2

]
��

����(
v0 + β

g

)2

− 2
���

���
(
v0 + g

β

)
g

β

v0

β
��

���
(
v0 + g

β

) +
(
g2

β3

)
ln
(

1 + βv0

g

)

Wr = −βm

g2
[

2βv0
g

+ β2v2
0

g2

]
2β3 − 2gv0

β
+
(
g2

β3

)
ln
(

1 + βv0

g

)

Wr = −

mg2

2β2

[
2βv0

g
+ β2v2

0
g2

]
− 2mgv0

β
+
(
mg2

β2

)
ln
(

1 + βv0

g

)

Wr = −

mgv0

β
+ mv2

0
2 − 2mgv0

β
+
(
mg2

β2

)
ln
(

1 + βv0

g

)

Wr = −mgv0

β
− mv2

0
2 + 2mgv0

β
−
(
mg2

β2

)
ln
(

1 + βv0

g

)
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Wr = mgv0

β
−
(
mg2

β2

)
ln
(

1 + βv0

g

)
− mv2

0
2

Wr = mgv0

β

1 −
(
mg2

β2

)
ln
(

1 + βv0

g

)− mv2
0

2 ■

1.4 Questão 44 - Pêndulo Físico

Um pêndulo físico constituído por uma placa fina e homogênea em forma de um setor

circular de raio R e ângulo central α, está suspenso verticalmente no centro O do disco

de origem. O pêndulo é deslocado por um ângulo θ em relação à vertical e, em seguida,

abandonado a partir do repouso para oscilar. A aceleração local da gravidade é g e

possíveis atritos são desprezíveis. Assinale a alternativa que apresenta a expressão

correta para a frequência angular ω de pequenas oscilações do pêndulo físico.

(A) ω =
√

4g
3R

(B) ω =
√

8g cos(α)
3Rα

(C) ω =
√

8g sin(α/2)
3Rα

(D) ω =
√

4g sin(α)
3Rα

(E) ω =
√

4g cos(α/2)
3Rα
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Solução:

Para pequenas oscilações linearizamos sin θ ≈ θ e usamos a equação do pêndulo físico:

IO θ̈ +mgh θ = 0,

θ̈ + mgh

IO

θ = 0,

θ̈ + ω2 θ = 0,

onde IO é o momento de inércia em relação ao ponto de suspensão O (eixo

perpendicular ao plano) e h é a distância do centro de massa ao ponto O.

1) Massa e momento de inércia:

Para uma placa homogênea em forma de setor, a densidade superficial σ satisfaz

m = σ · área = σ
(

1
2αR

2
)
.

O momento de inércia em relação a O (eixo perpendicular ao plano) é

IO = σ
∫ α

0

∫ R

0
r2 r dr dϕ = σ

αR4

4 .

Substituindo σ = 2m
αR2 obtemos

IO = 2m
αR2 · αR

4

4 = mR2

2 .

2) Centro de massa (distância radial h a partir de O):

O centro de massa de um setor circular encontra-se sobre a bissetriz e sua distância ao

centro é

h = rCM = 4R sin(α/2)
3α .

3) Frequência angular:
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ω =
√
mgh

IO

=

√√√√√√√√
mg

4R sin(α/2)
3α

mR2

2

=
√

8g sin(α/2)
3Rα .

Portanto, a alternativa correta é (C) .

1.5 Questão 45 - Colisão Unidimensional inelástica

Considere uma partícula de massa m, que se move com velocidade v0, e realiza uma

colisão unidimensional inelástica com outra partícula de massa M , inicialmente em

repouso. O coeficiente de restituição do material constituinte das partículas é denotado

por ε. Considerando que a razão das massas das partículas é M/m = λ, analise as

assertivas abaixo:

I. A velocidade da partícula de massa m após a colisão é v = v0(1 − ελ)/(1 + λ).

II. A velocidade da partícula de massa M após a colisão é V = v0(1 + ε)/(1 + λ).

III. A razão entre a energia cinética adquirida pela partícula de massa M e a energia

cinética inicial da partícula de massa m é λ(ε+ 1)/(λ+ 1).

Quais estão corretas?

(A) Apenas I.

(B) Apenas II.

(C) Apenas III.

(D) Apenas I e II.

(E) I, II e III.

Solução:

Pela conservação do momento e definição do coeficiente de restituição:

mv0 = mv +MV, V − v = ε(v0 − 0) = εv0.

Da segunda equação temos V = v + εv0. Substituindo na conservação do momento:

mv0 = mv +M(v + εv0) = (m+M)v +Mεv0.
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Isolando v:

(m+M)v = v0(m−Mε) ⇒ v = v0
m−Mε

m+M
= v0

1 − λε

1 + λ
,

o que confirma a assertiva I.

Agora V = v + εv0:

V = v0
1 − λε

1 + λ
+ εv0 = v0

1 − λε+ ε(1 + λ)
1 + λ

= v0
1 + ε

1 + λ
,

confirmando a assertiva II.

Para a assertiva III, calculemos a razão das energias:

KM

Km, inicial
=

1
2MV 2

1
2mv

2
0

= M

m

(
V

v0

)2
= λ

( 1 + ε

1 + λ

)2
= λ(1 + ε)2

(1 + λ)2 ,

que não coincide com λ(1 + ε)
1 + λ

(a dada na III). Portanto a assertiva III é falsa.

Assim, estão corretas apenas I e II.

A resposta correta é alternativa (D) .

1.6 Questão 47 - Oscilações acopladas

Dois blocos (1 e 2) de massas iguais a m = 0, 5 kg são conectados a três molas que estão

posicionadas entre duas paredes, conforme ilustrado na figura abaixo. A constante

elástica das duas molas externas é k = 2, 0 N/m, e a constante elástica da mola do meio

k0 = 8, 0 N/m. As molas têm massa desprezível e satisfazem à lei de Hooke. Sabe-se

também que quando os blocos se encontram simultaneamente em suas respectivas

posições de equilíbrio, as molas não apresentam qualquer deformação. Considere que

x1(t) e x2(t) denotam os deslocamentos dos blocos da esquerda e da direita,

respectivamente, em relação às suas posições de equilíbrio. No instante inicial t = 0,

ambos os blocos 1 e 2 são soltos a partir do repouso nas posições x1(0) = 10 cm e

x2(0) = 0, respectivamente. Assinale a alternativa que representa a posição dos blocos

como função do tempo medido em unidades do sistema internacional.

(A) x1(t) = 0, 05[cos(2t) + cos(6t)] m, x2(t) = 0, 05[cos(2t) − cos(6t)] m

(B) x1(t) = 0, 05[cos(2t) + cos(4t)] m, x2(t) = 0, 05[cos(4t) − cos(2t)] m
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(C) x1(t) = 0, 05 cos(3t) cos(t) m, x2(t) = 0, 05 sin(3t) sin(t) m

(D) x1(t) = 0, 10 cos(4t) m, x2(t) = 0, 10 sin(2t) m

(E) x1(t) = 0, 10 cos(2t) m, x2(t) = 0, 10 sin(4t) m

Solução:

1) Equações de movimento: Para o bloco 1:

mẍ1 = −kx1 − k0(x1 − x2).

Para o bloco 2:

mẍ2 = −kx2 − k0(x2 − x1).

⇒


ẍ1 + k + k0

m
x1 − k0

m
x2 = 0,

ẍ2 + k + k0

m
x2 − k0

m
x1 = 0.

2) Matriz do sistema:

ẍ1

ẍ2

 = − 1
m

k + k0 −k0

−k0 k + k0


x1

x2

 .
Com m = 0, 5, k = 2 e k0 = 8:

A = 1
0, 5

10 −8

−8 10

 =

 20 −16

−16 20

 .
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3) Autovalores (modos normais):

det(A− λI) = 0 ⇒ (20 − λ)2 − (−16)2 = 0,

(20 − λ)2 − 256 = 0, ⇒ 20 − λ = ±16.

λ1 = 4, λ2 = 36.

Logo, as frequências são:

ω1 =
√

4 = 2, ω2 =
√

36 = 6.

4) Autovetores: Para λ1 = 4:

(20 − 4)x1 − 16x2 = 0 ⇒ x1 = x2.

Para λ2 = 36:

(20 − 36)x1 − 16x2 = 0 ⇒ x1 = −x2.

Modos normais: 
Modo 1 (freq. 2 rad/s): x1 = x2,

Modo 2 (freq. 6 rad/s): x1 = −x2.

5) Combinação linear: Solução geral:

x1(t) = A cos(2t) +B cos(6t), x2(t) = A cos(2t) −B cos(6t).

6) Condições iniciais: No instante t = 0:

x1(0) = A+B = 0, 10, x2(0) = A−B = 0.

A = B = 0, 05.

7) Solução final:

x1(t) = 0, 05[cos(2t) + cos(6t)] m, x2(t) = 0, 05[cos(2t) − cos(6t)] m.
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A resposta correta é a alternativa (A) .

2 Gravitação

2.1 Questão 46 - Balança de torção de Cavendish

No experimento de Henry Cavendish, de 1797, foi utilizada uma balança de torção para

determinar o valor da constante gravitacional G da lei da gravitação universal de

Newton. Considere uma balança de torção composta por uma barra de massa

desprezível e comprimento L, suspensa horizontalmente pelo seu centro por um fio de

torção vertical. Duas pequenas esferas de massa igual a m estão presas em cada

extremidade da barra. No primeiro passo do experimento, observa-se que, quando a

barra é girada com um pequeno ângulo, torcendo o fio, e depois solta, o pêndulo de

torção resultante sofre movimento harmônico simples com um período T . Em seguida,

após o pêndulo ser parado e estar em sua posição de equilíbrio, um par de esferas

grandes de massa igual a M são colocadas em lados opostos da barra, cada uma

próxima a uma das massas m. Devido à atração gravitacional apenas entre cada par de

massas, a barra é observada girando por um pequeno ângulo θ e depois parar nessa

posição, com cada massa M a uma distância D da massa m correspondente. Determine

uma expressão para G em termos das variáveis dadas no problema.

(A) G = π2D2L2θ

MT 2

(B) G = 2π2D2Lθ

MT 2

(C) G = 4π2D2L2θ

MT 2
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(D) G = π2D2Lθ

mT 2

(E) G = π2D2Lθ

4mT 2

Solução:

1) Constante de torção via o período. Para pequenas oscilações, o pêndulo de

torção satisfaz

T = 2π
√
I

κ
⇒ κ = 4π2I

T 2 .

A barra é desprezível e há duas massas m a L/2 do eixo, logo

I = 2m
(
L

2

)2
= mL2

2 ⇒ κ = 4π2

T 2
mL2

2 = 2π2mL2

T 2 .

2) Equilíbrio com as massas M . A força gravitacional entre M e m é

F = GmM

D2 .

Cada força produz um torque de módulo F · (L/2) em torno do centro; são duas forças

simétricas, portanto o torque gravitacional total vale

τg = 2F
(
L

2

)
= F L.

No novo equilíbrio, o torque elástico do fio τκ = κ θ (para pequeno θ) equilibra o

torque gravitacional:

κ θ = F L = GmM

D2 L.

3) Isolando G. Substituindo κ:

2π2mL2

T 2 θ = GmM

D2 L ⇒ G = 2π2D2Lθ

MT 2 .

A resposta correta é a alternativa (B) .
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2.2 Questão 48 - Módulo da velocidade de um satélite orbitando a Terra

Um satélite artificial orbita a Terra em uma trajetória elíptica sob efeito apenas da força

gravitacional. O satélite passa pelo perigeu P (ponto mais próximo à Terra) com

velocidade v⃗p e pelo apogeu A (ponto mais afastado da Terra) com velocidade v⃗a. A

velocidade do satélite em um ponto Y , localizado na linha que passa pela Terra e

perpendicular ao eixo maior da elipse, é denotada por v⃗. É correto afirmar que o módulo

da velocidade v no ponto Y , em termos de vp e va , é expresso por:

(A) v = va + vp

2

(B) v = 2vavp

va + vp

(C) v = √
vavp

(D) v =
√
v2

a + v2
p

2

(E) v =
√√√√ 2v2

av
2
p

v2
a + v2

p

Solução:

Considerando a órbita elíptica com foco na Terra, usemos a equação de vis-viva e a

conservação do momento angular. Denotando por µ = GM ,

v2 = µ
(2
r

− 1
a

)
,

onde r é a distância ao foco (Terra) no ponto considerado e a é o semieixo maior. Para o
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perigeu (rp) e apogeu (ra) temos

v2
p = µ

(
2
rp

− 1
a

)
, (19)

v2
a = µ

( 2
ra

− 1
a

)
. (20)

Subtraindo (20) de (19) obtemos

v2
p − v2

a = 2µ
(

1
rp

− 1
ra

)
⇒ µ =

v2
p − v2

a

2
(

1
rp

− 1
ra

) .

O ponto Y corresponde ao ângulo verdadeiro θ = π
2 , portanto

rY = a(1 − e2)
1 + 0 = a(1 − e2).

Usando a relação entre os raios de perigeu/apogeu e a (isto é, rp = a(1 − e) e

ra = a(1 + e)) obtemos
1
rY

= a

rpra

= rp + ra

2rpra

.

Agora escrevemos a velocidade em Y via vis-viva (usando a expressão em rp e

eliminando 1/a):

v2
Y = v2

p + 2µ
(

1
rY

− 1
rp

)
.

Substituindo µ e 1
rY

− 1
rp

= rp − ra

2rpra

temos

v2
Y = v2

p + (v2
p − v2

a) rpra

ra − rp

· rp − ra

2rpra

= v2
p − 1

2(v2
p − v2

a).

Portanto

v2
Y =

v2
p + v2

a

2 ,

e

vY =
√
v2

p + v2
a

2 .

Resposta: alternativa D .
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3 Termodinâmica

3.1 Questão 49 - Variação de Entropia Total

Em um recipiente de capacidade térmica desprezível e termicamente isolado, uma

quantidade de água de massa mA = 80 g encontra-se inicialmente à temperatura

TA = 60◦C. Um cubo de gelo com massa mB = 20 g a T0 = 0◦C é introduzido no interior

do recipiente. Sabe-se que o calor específico da água é c = 1.0 cal g−1 ◦C−1 e o calor

latente de fusão do gelo a 0◦C é L = 80 cal g−1. Qual é a variação de entropia total do

sistema ao atingir o equilíbrio térmico, em unidades de cal · K−1?

(A) 20 ln
(305

273

)
− 80 ln

(333
305

)

(B) 20 ln
(321

273

)
− 80 ln

(333
321

)

(C) 8000
273 + 100 ln

(323
273

)
− 100 ln

(373
323

)

(D) 1600
273 + 20 ln

(321
273

)
− 80 ln

(333
321

)

(E) 1600
273 + 20 ln

(305
273

)
− 80 ln

(333
305

)

Solução:

Calculemos a temperatura de equilíbrio Tf pelo balanço de energia:

mAc(60 − Tf ) = mBL+mBc(Tf − 0).

Substituindo mA = 80, mB = 20, c = 1, L = 80:

80(60 − Tf ) = 20 · 80 + 20Tf ⇒ 4800 − 80Tf = 1600 + 20Tf

⇒ 100Tf = 3200 ⇒ Tf = 32◦C.

Usando temperaturas absolutas TK = T (◦C) + 273:

• Água: de 333 K a 305 K

∆Ságua = mAc ln
(305

333

)
= 80 ln

(305
333

)
.



24

• Gelo (fusão a 273 K + aquecimento de 273 a 305 K):

∆Sfusão = mBL

273 = 20 · 80
273 = 1600

273 ,

∆Saquec = mBc ln
(305

273

)
= 20 ln

(305
273

)
.

Somando todas as contribuições:

∆Stotal = 1600
273 + 20 ln

(305
273

)
+ 80 ln

(305
333

)
.

Reescrevendo o último termo com sinal negativo:

∆Stotal = 1600
273 + 20 ln

(305
273

)
− 80 ln

(333
305

)
.

A resposta correta é alternativa (E) .

3.2 Questão 50 - ciclo termodinâmico: gás de fótons

Processos termodinâmicos podem ser estendidos a partículas relativísticas, como um gás

de fótons. Considere uma radiação eletromagnética inicialmente confinada em uma

cavidade de volume V , a qual está em equilíbrio térmico com as paredes da cavidade a

uma temperatura T . Essa radiação se comporta como um gás de fótons, cuja energia

interna é dada por

U = 4σ
c
V T 4,

onde σ é a constante de Stefan-Boltzmann e c é a velocidade da luz no vácuo. A pressão

P do gás de fótons é um terço da densidade volumétrica de energia u = U/V , ou seja:

P = 4σ
3c T

4.

Esse gás de fótons é utilizado como substância de trabalho em um ciclo termodinâmico

(ABCDA), composto por dois processos isobáricos e dois processos isocóricos, conforme

ilustrado no diagrama P vs. V fornecido (retângulo com vértices

A(V0, P0), B(V0, 2P0), C(2V0, 2P0), D(2V0, P0)). Calcule a eficiência η do ciclo para o gás

de fótons.
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(A) η = 9,0%

(B) η = 12,5%

(C) η = 14,3%

(D) η = 15,4%

(E) η = 25%

Solução:

Para o gás de fótons temos U = 4σ
c
V T 4 e P = 4σ

3c T
4. Eliminando T 4:

T 4 = 3P
a

com a = 4σ
c
,

e

U = aV T 4 = aV
3P
a

= 3PV.

Logo U = 3PV .

Calculemos U em cada vértice (em unidades de P0V0):

UA = 3P0V0, UB = 3(2P0)V0 = 6P0V0,

UC = 3(2P0)(2V0) = 12P0V0, UD = 3P0(2V0) = 6P0V0.

Trabalho líquido do ciclo Wlíq é a área do retângulo:

Wlíq = (2P0 − P0)(2V0 − V0) = P0V0.

Agora os calores absorvidos (processos com Q > 0):

1. A → B (isocórico): WAB = 0, ∆UAB = UB − UA = 6P0V0 − 3P0V0 = 3P0V0. Assim

QAB = 3P0V0.

2. B → C (isobárico a P = 2P0): ∆UBC = UC − UB = 12P0V0 − 6P0V0 = 6P0V0.

Trabalho WBC = P∆V = 2P0(2V0 − V0) = 2P0V0. Logo

QBC = ∆UBC +WBC = 6P0V0 + 2P0V0 = 8P0V0.
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Os outros processos C → D e D → A liberam calor (Q < 0), portanto o calor total

absorvido é

Qin = QAB +QBC = 3P0V0 + 8P0V0 = 11P0V0.

Portanto a eficiência do ciclo é

η = Wlíq

Qin
= P0V0

11P0V0
= 1

11 ≈ 0,0909 ≡ 9,09%.

A resposta correta é alternativa (A) η = 9,0% .

4 Eletromagnetismo

4.1 Questão 51 - Equações de Maxwell no Vácuo

No artigo intitulado “A Dynamical Theory of the Electromagnetic Field”, de 1865,

James Clerk Maxwell formulou inicialmente 20 equações para descrever os campos

elétricos e magnéticos na natureza. Foram Oliver Heaviside e Heinrich Hertz que, duas

décadas após a morte de Maxwell, as simplificaram em quatro, conhecidas hoje como:

Lei de Gauss para eletricidade, Lei de Gauss para magnetismo, Lei de Faraday e Lei de

Ampère-Maxwell. Essas equações relacionam os vetores campo elétrico e campo

magnético e suas fontes, como cargas elétricas e correntes. Considerando as quatro

equações de Maxwell, é possível demonstrar que campos elétricos E⃗(r⃗, t) e magnéticos

B⃗(r⃗, t) dependentes do espaço e tempo, no espaço vazio, satisfazem equações de onda,

cuja velocidade de propagação é dada por 1/√µ0ε0, onde ε0 e µ0 são a permissividade

elétrica e a permeabilidade magnética do vácuo, respectivamente. Sobre esse conjunto de

equações, assinale a alternativa INCORRETA.

(A) A lei de Gauss para eletricidade estabelece que cargas elétricas estacionárias

produzem um campo elétrico, e o fluxo desse campo, ao passar por qualquer

superfície fechada, é proporcional à carga total contida nessa superfície.

(B) A lei de Gauss para o magnetismo estabelece que o fluxo magnético total que

passa por qualquer superfície fechada é zero. Do ponto de vista experimental, esta

equação descreve que as linhas de força do campo magnético não convergem nem

divergem de nenhum ponto no espaço, o que implica diretamente na ausência de
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polos magnéticos isolados (monopolos magnéticos) na natureza.

(C) A lei da indução eletromagnética, descoberta por Michael Faraday em 1831, em

uma série de experimentos, afirma que a integral de linha do campo elétrico em

torno de uma curva fechada C é igual ao negativo da taxa de variação temporal do

fluxo magnético através de qualquer superfície S limitada pela curva C.

(D) A lei de Ampère-Maxwell afirma que a integral de linha do campo magnético em

torno de qualquer curva fechada C é proporcional à soma da corrente elétrica de

condução e da corrente de deslocamento através da superfície S limitada pela

curva C.

(E) As equações de onda do campo elétrico e magnético são invariantes por

transformação de Galileu entre as coordenadas espaço-tempo de dois referenciais

inerciais.

Solução:

A resposta correta é alternativa (E) .

Explicação detalhada (alternativa a alternativa):

(A) — Correta.

Forma integral da Lei de Gauss (eletricidade):

∮
S

E · dA = Qenc

ε0
,

e forma diferencial:

∇ · E = ρ

ε0
.

Isto significa exatamente que o fluxo do campo elétrico através de qualquer superfície

fechada é proporcional à carga total contida no volume delimitado por essa superfície. A

alternativa A descreve corretamente a lei.

(B) — Correta.

Lei de Gauss para o magnetismo (integral):

∮
S

B · dA = 0,
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e diferencial:

∇ · B = 0.

Isso expressa que não há "fontes" ou "sumidouros" para B: as linhas de campo

magnético são contínuas (laços fechados) e não existem monopolos magnéticos

observados. A descrição da alternativa B está correta.

(C) — Correta.

Lei de Faraday (forma integral):

∮
C

E · dl = − d

dt

∫
S

B · dA,

ou diferencial:

∇ × E = −∂B
∂t
.

Isto corresponde exatamente ao enunciado: a força eletromotriz ao longo de uma curva

fechada é o negativo da variação temporal do fluxo magnético pela superfície limitada.

A alternativa C está correta.

(D) — Correta.

Lei de Ampère-Maxwell (integral):

∮
C

B · dl = µ0Ienc + µ0ε0
d

dt

∫
S

E · dA,

ou diferencial:

∇ × B = µ0J + µ0ε0
∂E
∂t
.

A inclusão do termo µ0ε0∂E/∂t (corrente de deslocamento) foi essencial para a

consistência matemática e física das equações e para permitir equações de onda para E e

B. A alternativa D está correta.

(E) — Incorreta (explicação detalhada).

As equações de Maxwell no vácuo levam às equações de onda para os campos elétrico e

magnético, por exemplo (forma escalar 1D para ilustrar):

∂2f

∂x2 − 1
c2
∂2f

∂t2
= 0, c = 1

√
µ0ε0

.
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Essas equações de onda não são invariantes sob transformações de Galileu. A

transformação galileana entre dois referenciais que se movem com velocidade v (no eixo

x) é

x′ = x− vt, t′ = t.

Aplicando a regra da cadeia:

∂

∂x
= ∂

∂x′ ,
∂

∂t
= ∂

∂t′
− v

∂

∂x′ .

Logo
∂2

∂t2
= ∂2

∂t′2
− 2v ∂2

∂t′∂x′ + v2 ∂2

∂x′2 .

Substituindo na equação de onda obtemos termos mistos ∂2/(∂t′∂x′) e um coeficiente

diferente no termo ∂2/∂x′2; o operador da onda não preserva sua forma original salvo

nos casos triviais v = 0 ou c → ∞. Escrevendo:

∂2

∂x′2 − 1
c2

(
∂2

∂t′2
− 2v ∂2

∂t′∂x′ + v2 ∂2

∂x′2

)
̸= ∂2

∂x′2 − 1
c2

∂2

∂t′2
.

Portanto a equação de onda muda de forma sob a transformação galileana — não é

invariante.

Fisicamente, isso reflete que Maxwell prediz uma velocidade de propagação c da luz que

é a mesma em todos os referenciais inerciais — este fato é incompatível com a adição

simples de velocidades postulada pela transformação de Galileu. A resolução histórica

dessa contradição levou às transformações de Lorentz e à teoria da relatividade restrita

de Einstein: as equações de Maxwell são invariantes sob transformações de Lorentz, não

sob Galileu. Assim a alternativa E está errada.

Conclusão: a única alternativa incorreta é a E porque as equações de onda (e, em

geral, as equações de Maxwell) não são invariantes sob transformações galileanas — elas

exigem invariância de Lorentz.

4.2 Questão 52 - Lei de Gauss para Eletricidade

Uma carga elétrica pontual q > 0 se encontra no centro geométrico de uma superfície

gaussiana cilíndrica de altura 2L e raio a. Sabendo que ε0 é a permissividade elétrica do

meio em todo o espaço e que as grandezas são expressas no sistema internacional de
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unidades, analise as assertivas abaixo:

I. O fluxo total do vetor campo elétrico na superfície gaussiana cilíndrica é dado por
q

2πε0RL
.

II. Os fluxos elétricos do vetor campo elétrico através de cada uma das superfícies

circulares superior (ϕ1) e inferior (ϕ2) do cilindro são dados por:

ϕ1 = ϕ2 = q

2ε0

(
1 − L√

L2 + a2

)
.

III. O fluxo elétrico ϕ3 através da superfície lateral do cilindro é dado por:

ϕ3 = q

ε0

a√
L2 + a2

.

Quais estão corretas?

(A) Apenas I.

(B) Apenas II.

(C) Apenas III.

(D) Apenas II e III.

(E) I, II e III.

Solução:

Analisemos cada item.

Total de fluxo (verificação de I). Por Teorema de Gauss, o fluxo elétrico total

através de uma superfície fechada que envolve a carga pontual q é

Φtotal = q

ε0
.
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A expressão dada em I, q

2πε0RL
, não tem dimensão nem forma compatível com q/ε0.

Portanto I é falsa.

Fluxo através de uma tampa circular (verificação de II). Considere a tampa

circular superior: a carga está no eixo, à distância L do plano da tampa, e a tampa tem

raio a. A semi-ângulo sólido θ que a tampa subtende satisfaz cos θ = L√
L2 + a2

. O

ângulo sólido Ω subtendido pela tampa (vista da carga) é

Ω = 2π(1 − cos θ) = 2π
(

1 − L√
L2 + a2

)
.

O fluxo através da tampa é a fração Ω/(4π) do fluxo total q/ε0:

ϕ1 = q

ε0
· Ω

4π = q

ε0
·

2π
(

1 − L√
L2 + a2

)
4π = q

2ε0

(
1 − L√

L2 + a2

)
.

Como a tampa inferior é simétrica, ϕ2 = ϕ1. Logo a expressão em II está correta; II é

verdadeira.

ϕ1 = ϕ2 = q

2ε0

(
1 − L√

L2 + a2

)
.

Fluxo através da superfície lateral (verificação de III). O fluxo lateral ϕ3 é o

fluxo total menos o fluxo pelas duas tampas:

ϕ3 = Φtotal − 2ϕ1 = q

ε0
− 2 · q

2ε0

(
1 − L√

L2 + a2

)
= q

ε0
· L√

L2 + a2
.

ϕ3 = q

ε0

L√
L2 + a2

Portanto o valor correto é ϕ3 = q

ε0

L√
L2 + a2

, não o dado em III (que tem a no

numerador). Assim III é falsa.

Conclusão: apenas a assertiva II está correta.

A resposta correta é alternativa (B) Apenas II .
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4.3 Questão 53 - Lei de Ampère

Uma espira retangular com lados a e b encontra-se situada no mesmo plano, a uma

distância D de um fio retilíneo muito longo, conforme a figura. Sabe-se que no intervalo

de tempo 0 ≤ t ≤ T o fio conduz uma corrente elétrica que varia linearmente com o

tempo de acordo com a função

I(t) = I0

(
1 − t

T

)
,

onde I0 representa a intensidade da corrente no instante de t = 0. A constante de

permeabilidade magnética do meio é µ0, e o fio e a espira retangular estão fixos em suas

posições. Desconsiderando os efeitos de autoindutância, determine o módulo da força

eletromotriz induzida E(t) na espira retangular para o intervalo de tempo 0 ≤ t ≤ T .

(A) |E(t)| = µ0abI0
2πDT

(B) |E(t)| = µ0bI0
2πT

ln
(
1 + a

D

)
(C) |E(t)| = µ0bI0

2πT

(
1
a

− 1
a+D

)
(D) |E(t)| = µ0bI0

2π

(
1 − t

T

)
ln
(
1 + a

D

)
(E) |E(t)| = µ0bI0

2π

(
1 − t

T

) (
1
a

− 1
a+D

)

Resolução

O fluxo magnético ΦB através da espira devido ao fio retilíneo é dado por:

ΦB(t) =
∫

espira
B⃗ · dS⃗.
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O campo magnético de um fio retilíneo infinito é:

B(r, t) = µ0I(t)
2πr ,

onde r é a distância perpendicular ao fio.

Para uma espira retangular, integramos ao longo da direção a (altura da espira):

ΦB(t) =
∫ D+a

D
B(r, t) b dr = b

∫ D+a

D

µ0I(t)
2πr dr = µ0bI(t)

2π

∫ D+a

D

dr

r
.

O resultado da integral:

ΦB(t) = µ0bI(t)
2π ln

(
D + a

D

)
= µ0bI(t)

2π ln
(

1 + a

D

)
.

A força eletromotriz induzida na espira é dada pela lei de Faraday:

E(t) =
∣∣∣∣∣−dΦB(t)

dt

∣∣∣∣∣ =
∣∣∣∣∣−µ0b

2π ln
(

1 + a

D

)
dI(t)
dt

∣∣∣∣∣ .
Como I(t) = I0

(
1 − t

T

)
, temos:

dI(t)
dt

= −I0

T
.

Substituindo na expressão da FEM:

E(t) = µ0bI0

2πT ln
(

1 + a

D

)
.

Conclusão

O módulo da força eletromotriz induzida na espira retangular é constante e dado por:

E(t) = µ0bI0

2πT ln
(

1 + a

D

)
.

Portanto, a alternativa correta é B .
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5 Óptica Geométrica

5.1 Questão 54 - Lente Convergente

Uma lente delgada convergente de distância focal f é colocada entre uma fonte luminosa

e um anteparo, que estão fixos e separados por uma distância L, com L ≥ 4f . Qual é a

expressão para a distância entre as duas posições da lente que formarão imagens reais

nítidas da fonte sobre o anteparo?

(A) L/2

(B)
√
L2 + 2fL

(C)
√
L2 + 4fL

(D)
√
L2 − 2fL

(E)
√
L2 − 4fL

Solução:

Seja p a distância objeto-lente (da fonte até a lente) e q a distância lente–imagem (da

lente até o anteparo). Como fonte e anteparo estão separados por L e a lente fica entre

eles, temos

p+ q = L.

A equação da lente delgada é
1
f

= 1
p

+ 1
q
.
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Substituindo q = L− p:
1
f

= 1
p

+ 1
L− p

= L

p(L− p) .

Multiplicando ambos os lados por p(L− p):

p(L− p) = fL.

Isso resulta na equação quadrática

p2 − Lp+ fL = 0.

As raízes desta equação (as duas posições possíveis da lente que formam imagem nítida

no anteparo) são

p1,2 = L±
√
L2 − 4fL
2 .

A distância entre as duas posições da lente é

∆p = |p1 − p2| =
√
L2 − 4fL.

Portanto a alternativa correta é a (E) .

6 Interferência e Difração

6.1 Questão 55 - Fibras Ópticas

O uso das fibras óticas é uma das principais aplicações tecnológicas da óptica na área de

comunicações. Fibras cilíndricas finas de vidro ou plástico podem ser usadas para

transmitir sinais ao invés de fios metálicos. A grande vantagem está na largura de banda

disponível quando o portador são ondas eletromagnéticas. Isso permite que uma fibra

carregue muito mais sinais independentes diferentes do que um fio condutor. Existem

também vantagens em termos de peso e independência de recursos limitados. Considere

uma fibra óptica composta por um núcleo de vidro fino com índice de refração nf ,

cercado por uma camada de revestimento de menor densidade com índice de refração

nr < nf . O índice de refração do ar é denotado por n0. Assinale a alternativa que

expressa corretamente o ângulo de incidência máximo (θm) que qualquer raio que incida
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na face de entrada seja guiado dentro da fibra por reflexões internas totais sucessivas.

(A) θm = arcsin
( 1
n0

√
n2

f − n2
r

)

(B) θm = arcsin
(
n2

f

n2
0

−
n4

f

n2
0n

2
r

)

(C) θm = arccos
( 1
n0

√
n2

f − n2
r

)

(D) θm = arcsin
(
nf

nr

)

(E) θm = arccos
(
nr

nf

)

Solução:

Para guiar por reflexões internas totais, o raio dentro do núcleo deve atingir a interface

núcleo-revestimento com um ângulo de incidência igual ao mínimo permitido (ângulo

crítico) θc com sin θc = nr

nf

. Em termos do ângulo θ′ que o raio faz com o eixo da fibra, a

condição limite é θ′
max = 90◦ − θc, portanto

sin θ′
max = cos θc =

√
1 − sin2 θc =

√√√√1 −
(
nr

nf

)2

=

√
n2

f − n2
r

nf

.

Na face de entrada, pela lei de Snell n0 sin θm = nf sin θ′. Substituindo sin θ′ = sin θ′
max

obtém-se

sin θm = nf

n0
·

√
n2

f − n2
r

nf

= 1
n0

√
n2

f − n2
r,

logo

θm = arcsin
( 1
n0

√
n2

f − n2
r

)
.
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A resposta correta é alternativa (A) .

6.2 Questão 57 - Interferência da Luz

No trabalho intitulado “Uso do espelho de Lloyd como método de ensino de óptica no

Ensino Médio” (Revista Brasileira de Ensino de Física, 2012), os autores propõem uma

abordagem para o ensino de óptica, com ênfase na aplicação de conceitos básicos sobre o

fenômeno da interferência da luz. Foi utilizado o experimento denominado “espelho de

Lloyd”, que oferece uma ligação mais simples entre a óptica geométrica e a óptica física,

sendo muito mais acessível do que a experiência das duas fendas de Young, segundo os

autores. No procedimento, um padrão de franjas de interferência é observado usando-se

luz emitida por uma fonte coerente, como um laser, e a luz refletida por uma placa de

vidro (figura a). O padrão de interferência é projetado em um anteparo. As distâncias

entre a fonte luminosa em relação ao plano da placa de vidro e o anteparo são,

respectivamente, d = 1, 0 mm e D = 2, 0 m (figura b). Durante a realização do

experimento, foi registrado um padrão de interferência (figura c) com 14 franjas por

centímetro.

Qual é o valor do comprimento de onda λ da luz que foi medido, levando em

consideração as informações fornecidas?

(A) 660 nm.

(B) 680 nm.

(C) 710 nm.

(D) 750 nm.
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(E) 780 nm.

Solução:

No arranjo de Lloyd, a franja de interferência observada no anteparo é similar à obtida

por duas fontes separadas por 2d (a fonte real e a imagem especular). Para pequenas

inclinações (parâmetro de aproximação de Gauss) a separação entre franjas sucessivas

(franja brilhante para a próxima franja brilhante) é dada por

β = λD

2d .

Da observação temos 14 franjas por centímetro, portanto a distância entre franjas é

β = 1 cm
14 = 0,01 m

14 = 7,142857 × 10−4 m.

Isolando λ na expressão para β:

λ = 2d β
D

.

Substituindo os valores numéricos (d = 1,0 mm = 1,0 × 10−3 m, D = 2,0 m):

λ = 2 (1,0 × 10−3) (7,142857 × 10−4)
2,0 = 1,0×10−3×7,142857×10−4 = 7,142857×10−7 m.

Em unidades nanométricas:

λ ≈ 7,14 × 10−7 m = 714 nm.

Comparando com as alternativas apresentadas, o valor mais próximo é 710 nm

(alternativa (C)).

A resposta correta é alternativa (C) 710 nm .

7 Relatividade

7.1 Questão 56 - Transformação de Lorentz

Seja R um referencial inercial e R′ um referencial inercial que se move em relação a R,

com velocidade constante v⃗ = βcx̂, na qual c é a velocidade da luz no vácuo e |β| < 1 é
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um parâmetro adimensional. Os eixos x, y, z de R são paralelos aos eixos x′, y′, z′ de R′,

e as coordenadas espaço-tempo estão relacionadas entre si através da transformação de

Lorentz. Sabe-se também que as origens O e O′ dos referenciais R e R′ são coincidentes

nos instantes t = t′ = 0. Considere as funções de onda Ψ±(x, t) = Ψ0 exp[ikϕ±(x, t)],

onde k é o vetor de onda e os comprimentos ϕ± são ϕ+(x, t) = x+ ct e ϕ−(x, t) = x− ct.

É correto afirmar que no referencial R′ as grandezas ϕ′
+ e ϕ′

− estão relacionadas através

da seguinte forma, respectivamente:

(A) ϕ′
+ = ϕ+(1 + β) e ϕ′

− = ϕ−(1 − β)

(B) ϕ′
+ = ϕ+(1 − β) e ϕ′

− = ϕ−(1 + β)

(C) ϕ′
+ = ϕ+

√
1 − β

1 + β
e ϕ′

− = ϕ−

√
1 + β

1 − β

(D) ϕ′
+ = ϕ+

√
1 + β

1 − β
e ϕ′

− = ϕ−

√
1 − β

1 + β

(E) ϕ′
+ = 1√

1 − β2 (ϕ+ − βϕ−) e ϕ′
− = 1√

1 − β2 (ϕ− + βϕ+)

Solução:

Usando as transformações de Lorentz,

ϕ′
+ = x′ + ct′ = γ(x− βct) + cγ

(
t− β

x

c

)
= γ

[
(1 − β)x+ (1 − β)ct

]
= γ(1 − β) (x+ ct) = γ(1 − β)ϕ+.

Analogamente,

ϕ′
− = x′ − ct′ = γ(x− βct) − cγ

(
t− β

x

c

)
= γ

[
(1 + β)x− (1 + β)ct

]
= γ(1 + β) (x− ct) = γ(1 + β)ϕ−.

Como γ(1 − β) = 1 − β√
1 − β2 =

√
1 − β

1 + β
e γ(1 + β) =

√
1 + β

1 − β
, obtemos exatamente a

alternativa (C).

A resposta correta é alternativa (C) .



40

7.2 Questão 58 - Energia-Momento Relativística

Um experimento simplificado para verificar a relação energia-momento relativística de

partículas beta emitidas por uma fonte radioativa foi proposto recentemente por D.

Jackson et al. no American Journal of Physics, 92, 775 (2024). No aparato

experimental, as partículas beta, de massa de repouso m0 e carga elétrica q, são emitidas

por uma fonte de 204Tl (tálio-204) e, em seguida, passam por um colimador de aço que

direciona suas trajetórias. Após saírem do colimador, as partículas beta seguem

trajetórias (aproximadamente) circulares devido a um campo magnético uniforme de

intensidade B. Um colimador de alumínio conduz as partículas para um detector

Geiger-Müller, que registra a chegada das partículas, permitindo a medição do raio R de

suas trajetórias. Seja K a energia cinética de uma partícula beta incidente na região do

campo magnético e, considerando efeitos relativísticos, determine o raio R dessas

trajetórias é dado pela expressão:

(A) R =
√

2m0K

(q2B2)

(B) R =
√

m0K

(2q2B2)

(C) R =
√
K(2m0c

2 −K)
(qBc)2

(D) R =
√
K(2m0c

2 +K)
(qBc)2

(E) R =
√

2K(m0c
2 +K)

(qBc)2
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Solução:

A força magnética fornece a força centrípeta responsável pela trajetória circular:

qvB = p v

R
⇒ R = p

qB
,

onde p é o momento relativístico da partícula.

Relatividade special: a energia total é

E = γm0c
2 = K +m0c

2,

e a relação energia-momento é

E2 = (pc)2 + (m0c
2)2.

Isolando p obtemos

(pc)2 = E2 − (m0c
2)2 = (K +m0c

2)2 − (m0c
2)2 = K2 + 2Km0c

2.

Portanto

p =
√
K2 + 2Km0c2

c
=

√
K (K + 2m0c2)

c
.

Substituindo em R = p/(qB):

R = 1
qB

√
K2 + 2Km0c2

c
=

√
K (K + 2m0c2)

qBc
.

Escrevendo em forma equivalente (colocando o denominador (qBc)2 sob o radical):

R =

√√√√K (2m0c
2 +K)

(qBc)2 .

Assim, a alternativa que coincide com a expressão correta é a (D).

A resposta correta é alternativa (D) .
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8 Mecânica quântica em três dimensões e átomo de Hidrogênio

8.1 Questão 59 - Modelo de Bohr para positrônio

Recentemente, uma equipe de pesquisadores do CERN alcançou um avanço importante

ao aplicar uma técnica inovadora de resfriamento a laser em uma amostra de positrônio,

uma partícula composta por um elétron (carga elétrica −e e massa m) e um pósitron

(antipartícula com carga positiva e massa semelhante à do elétron). Essa conquista

permite uma investigação mais precisa das propriedades do positrônio, abrindo

possibilidades para estudos fundamentais, como a produção de condensados

Bose-Einstein de antimatéria e a geração de luz gama coerente, o que poderia trazer um

leque de novas aplicações.

Considerando o modelo de Bohr para átomos hidrogenoides, é correto afirmar que os

níveis de energia de um positrônio, em função do número quântico principal n, são

dados por:

(A) En = −3,4/n2 eV

(B) En = −6,8/n2 eV

(C) En = −13,6/n2 eV

(D) En = −27,2/n2 eV

(E) En = −25,0/n2 MeV

Solução:
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No modelo de Bohr para um sistema de duas partículas (átomo hidrogenoide) as

energias estão dadas por

En = − µe4

2(4πε0)2ℏ2
1
n2 ,

onde µ é a massa reduzida do sistema. Para o hidrogênio (núcleo com massa muito

maior que m) tem-se µ ≈ me e portanto

EH
n = − mee

4

2(4πε0)2ℏ2
1
n2 = −13,6

n2 eV.

No caso do positrônio, o sistema é formado por um elétron e um pósitron com a mesma

massa me, então a massa reduzida é

µ = me ·me

me +me

= me

2 .

Substituindo na expressão para En obtemos

EPs
n = − (me/2)e4

2(4πε0)2ℏ2
1
n2 = −1

2

(
mee

4

2(4πε0)2ℏ2

)
1
n2 = −1

2 · 13,6
n2 eV.

Logo

EPs
n = −6,8

n2 eV .

Portanto, a alternativa correta é a (B).

A resposta correta é alternativa (B) En = −6,8/n2 eV .

8.2 Questão 60 - Átomo de Hidrogênio

O estado de um elétron em um átomo de hidrogênio, na representação posição

r⃗ = xx̂+ yŷ + zẑ, é descrito pela função de onda normalizada a seguir:

ψ(r⃗) = 1√
32πa5

0

(αx+ βy + γz) exp
(

− r

2a0

)
,

onde a0 é o raio de Bohr, r =
√
x2 + y2 + z2 e α, β, γ são números reais que satisfazem

α2 + β2 + γ2 = 1. O estado ψ(r⃗) é uma superposição das autofunções ψnlm(r, θ, ϕ) do

átomo de hidrogênio, para n = 2.

A tabela apresenta as autofunções normalizadas do átomo de hidrogênio em

coordenadas esféricas (r, θ, ϕ) para os orbitais com n = 2:
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Estado (n, l,m) Função de onda

(2, 0, 0) ψ200(r, θ, ϕ) = 1√
8πa3

0

(
1 − r

2a0

)
e−r/2a0

(2, 1, 0) ψ210(r, θ, ϕ) = 1√
8πa3

0

r
2a0
e−r/2a0 cos θ

(2, 1,±1) ψ21±1(r, θ, ϕ) = ± 1√
16πa3

0

(
r

2a0

)
e−r/2a0 sin θe±iϕ

Seja ℏ = h/2π. Assinale a alternativa correta que representa a probabilidade de uma

medida de L̂z resultar +ℏ.

(A) P (Lz = +ℏ) = 1
2(α2 + β2)

(B) P (Lz = +ℏ) = α2 + β2

(C) P (Lz = +ℏ) = 1
2(α2 − β2)

(D) P (Lz = +ℏ) = α2 − β2

(E) P (Lz = +ℏ) = γ2

Solução:

A função de onda dada pode ser reescrita em coordenadas esféricas. Usando:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

obtemos

ψ(r, θ, ϕ) = r√
32πa5

0

exp
(

− r

2a0

)
[α sin θ cosϕ+ β sin θ sinϕ+ γ cos θ] .

Comparando com as autofunções da tabela, vemos que:

ψ210(r, θ, ϕ) ∝ r

a0
e−r/2a0 cos θ,

ψ21±1(r, θ, ϕ) ∝ r

a0
e−r/2a0 sin θe±iϕ.

Podemos escrever:

α sin θ cosϕ+ β sin θ sinϕ = α− iβ

2 sin θeiϕ + α + iβ

2 sin θe−iϕ.



45

Assim, o estado é uma combinação linear:

ψ ∼ γψ210 + α− iβ√
2

ψ21,1 + α + iβ√
2

ψ21,−1.

Portanto, o coeficiente da autofunção ψ21,1 (que corresponde a m = +1, logo Lz = +ℏ) é

c+1 = α− iβ√
2

.

A probabilidade é

P (Lz = +ℏ) = |c+1|2 = 1
2(α2 + β2).

Logo, a alternativa correta é a (A).

A resposta correta é alternativa (A) P (Lz = +ℏ) = 1
2(α2 + β2) .
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Problema. Um pêndulo de massa m2 e comprimento L é solto do repouso na posição

A, que faz um ângulo θ com a vertical. A corda passa por uma roldana ideal e traciona

um bloco de massa m1 sobre uma mesa horizontal. Ao o pêndulo atingir o ponto mais

baixo B, qual deve ser o menor coeficiente de atrito estático µs entre m1 e a mesa para

que m1 não deslize?

Solução.

1) Velocidade do pêndulo em B. Pela conservação de energia entre A e B:

m2gL (1 − cos θ) = 1
2m2v

2
B ⇒ v2

B = 2gL (1 − cos θ).

2) Tração na corda em B. No ponto mais baixo, as forças radiais no pêndulo dão

TB −m2g = m2
v2

B

L
⇒ TB = m2

(
g + v2

B

L

)
= m2g

[
1 + 2(1 − cos θ)

]
= m2g (3 − 2 cos θ).

Como a roldana é ideal, a tração que puxa m1 na horizontal é TB.

3) Condição de não deslizamento de m1. Para m1 permanecer em repouso, a força de

atrito estático máxima deve ser ao menos igual à tração:

fs,max = µsN = µsm1g ≥ TB.

Logo, o coeficiente mínimo é

µs,min = TB

m1g
= m2

m1

(
3 − 2 cos θ

)
.

Observação: O ponto B é o ponto mais baixo da trajetória, onde a tração é máxima;

portanto, se m1 não desliza em B, não deslizará em nenhuma outra posição.
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