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1 Mecanica

1.1 Questao 41 — Forca minima para iminéncia de movimento rampa acima

Um bloco de massa m encontra-se em repouso sobre um plano inclinado de angulo 6
com a horizontal. Uma forca Fé aplicada ao bloco, formando angulo ¢ com a direcao
do plano, como indicado na figura. O coeficiente de atrito estatico entre o bloco e o
plano é u. Determine a intensidade minima da forga F necessiria para colocar o bloco

na iminéncia de subir a rampa.

1) Equilibrio de forgas

Projetando as forcas ao longo dos eixos & (paralelo a rampa, apontando para cima) e §

(normal ao plano):
Fcosp —mgsind — uN =0 (1)
N —mgcosf + Fsing=0 = N =mgcost — Fsiny (2)
Substituindo (2) em (1), obtemos:

Fcosgo:mgsinﬁ—i—,u(mgcosH—Fsingo). (3)

2) Expressao para a forca aplicada

Da equacao (3), resulta:



mg(sin 6 + pcosf)

F =
(%) CosS ¢ + psin g

3) Maximizacdo do denominador via Cauchy—Schwarz

O denominador pode ser escrito como produto escalar:

cos ¢ + psinp = (cos ¢, singp) - (1, u).

Pela desigualdade de Cauchy—Schwarz :

cos @ + psinp < /1 + p?.

A igualdade em (5) ocorre quando

tan " = p,

isto é,

4) Forga minima

Substituindo o valor maximo do denominador (5) em (4), temos:

mg(sin @ + pcosf)

Fmin:
V14 p?

(7)

Portanto, a forca minima aplicada que coloca o bloco na iminéncia de subir a rampa ¢é

dada por (7), atingida quando (6) vale.

Alternativa correta: D.



1.2 Questao 42 — Cilindro com atrito

Uma prancha de madeira, com comprimento L = 1,0 m e massa m = 0,4 kg, possui um
cilindro macico e homogéneo de aco, com massa M = 0,6 kg, localizado na extremidade
direita da prancha. O sistema esta em repouso sobre um plano horizontal liso. Uma
forca constante F= (20 N) # é aplicada a prancha, fazendo com que os objetos comecem
a se mover acelerados. O cilindro rola suavemente, sem escorregar, sobre a prancha,
devido a presenca de atrito entre eles. Desprezando o atrito entre a prancha e a
superficie horizontal, bem como qualquer forca de resisténcia do ar, determine o
intervalo de tempo, em segundos, que o cilindro levara para cair da prancha, ou seja,

para atingir a extremidade oposta e deixar de estar em contato com ela.

superficie pd M

horizontal g

sem atrito -
\ m —>
\m\ QARG

A 4

(A) 0,1
(B) 0,25
(C) 035
(D) 04 s

(E) 0,5s

1) Definigcao das varidveis e forgas

Seja a, a aceleragdo da prancha (para a direita) e a. a aceleragdo do centro do cilindro

(para a direita), ambas medidas no referencial inercial do solo. Seja f a forga de atrito



horizontal exercida pela prancha sobre o cilindro (no ponto de contato). Pela agao e
reacao, a prancha sofre —f da parte do cilindro.

Para o cilindro macico homogéneo, momento de inércia em relagdo ao centro:

1
I= 5MR?. (8)

Nao precisamos do valor de R explicitamente, apenas das relagoes de rotagao/translagao.

2) Equagoes de movimento

Equilibrio (segunda lei) para a prancha (forca total horizontal):
F — f =ma,. (9)
Equacao de translacao para o cilindro:
f=Ma. (10)
Equacao de rotagao para o cilindro (torque causado por f):
1 2
fR=Ta= (QMR ) a. (1)

Condicao de rolamento sem escorregar entre cilindro e prancha: a velocidade
do ponto de contato do cilindro iguala a velocidade da prancha. Em termos
das aceleragoes:

a. — a, = —Roa. (12)

(A escolha do sinal garante consisténcia: se a prancha acelera mais que o cilindro, o

contato induz uma rotagao que satisfaz (12).)

3) Eliminacao das incégnitas

Da (11) e de (12) obtemos:

fR=iMRa = f=1iMRa.



Usando (12) o = —(a. — a,)/R, resulta

Por outro lado, pela translagao do cilindro (10):
[ = Ma.. (14)

Igualando (13) e (14):

Dividindo por M e rearranjando:
ac=—1a.+3a, = 3a.=
Substituindo (1.2) em (9) e usando (10) (f = Ma.):
F — Ma, = ma,.
Como a, = a,/3, obtemos
F—M%:map = F:aI,(m—i—]\;).

Logo a aceleracao da prancha:

F 3F
= = ) 1
m+ —
3
E, pela (1.2), .
ap
= = . 16
e T3+ M (16)

4) Aceleragao relativa e tempo até cair

A aceleragao relativa entre prancha e cilindro (aceleracao com que a prancha “afasta-se”

do cilindro) é

a, 2
arelzap—aczap—§:§ap.



Usando (15):

2  3F oF
Qre]l = 3 ° = .
"3 ' 3m+ M 3m+M

(17)

Inicialmente a velocidade relativa é zero (sistema parte do repouso). A distancia relativa
a percorrer para que o cilindro passe da extremidade direita até a esquerda da prancha é

L. Para movimento uniformemente acelerado, o tempo t satisfaz L = %areth, portanto

t:\/zﬁ/%@g%;m:,/w_ (18)

5) Substituicdo numérica

Dados: m =04 kg, M =0,6 kg, L =1,0 m, FF =20 N.
Calcule 3m + M:
3m+ M =3(04)+0,6=12+0,6=1,8 kg.

Substituindo em (18):

B (3m+M)L_\/1,8><1,0_ 18 B
t\/ = 20 f,/ZOf\/o,09fo,30s.

Resposta: t = 0,3 s. (Alternativa C.)

1.3 Questao 43 - Trabalho de uma forga de resisténcia

Um projétil de massa m ¢ lancado verticalmente para cima a partir da posicao z =0
com velocidade inicial o' = vy2 (vg > 0) no instante t = 0. Além da forca gravitacional,
atua sobre ele uma forga de resisténcia do ar proporcional a velocidade: F=— Bmu,
onde > 0 é o parametro de amortecimento. A aceleracao da gravidade é g = —g2Z.
Determine o trabalho realizado pela forca de resisténcia desde o lancamento até a altura

maxima.

Solucgao:

A forcga de resisténcia é:



O trabalho realizado pela forca de resisténcia até a altura maxima é:

Wr:/maxﬁr-dfz—ﬁm/mxvdz.
0 0

A equagao do movimento € :

dv dv
ma——mg—ﬁmv = E—i—ﬂv——g.

Solugao da equagao diferencial:

dv dv

a—l—ﬁv:—géaz—g—ﬁv
givﬂv =
/g—ivﬁv:_/dt
ln(ggrﬁv) _ _tic

Usando as condigoes de contorno do problema (quando t =0e v =1v,) :

O — In (g + Bvo)

In(g+pv)
5 T 5

In(g+ Bv) In(g—+ Puo) _
B B

In(g+ Bv) —In(g+ Pvg) = —pt

[ loss

(9+5U0)] -
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(9 + Bv) o Bt

(g + Buwo)

(9+ Bv) = (g + Bug) e™™

Bu=(g+Bu)e " —g

o(t) = ( s 9) -t _

9
8 B

Altura méxima ocorre em ty., tal que v(tmax) = 0

_ 9\ Btmax 9 Bteas . 9/B 1 ( 52)0)
O=lw+]e -Z = e =—"—— = |tmax=-(1+—].
(O 5) g vo +g/B B

O trabalho da forga de resisténcia:

tmax tmax 2
W, = —Bm/o V3 (t) dt = —ﬁm/O [(vo + é) e Pt — g] dt.

tmax 2
W, = —Bm/o [(vo + g) e Pt — Z] dt

2 2
ot oo ) g 2 o
2 2
g tmax — “/'L g g g tmax
(,UOJrﬁ) /O . zddt—2<vo—|—ﬁ>6 +<ﬁ> /0 dt]

tmax — 72/8tmax
opr,, _ L—e

e dt = ————,
0 23

1 J— e_Btmax
= 6 ,
tmax
[ dt =t
0

Integrando e substituindo ty., ¢ e Pmax:

tmax
W, = —ﬂm/
0

- —Bm




1 — 672ﬁtmax — 1 —e

1 — 672:8tmax — 1 _

9
1 — e 2Ptmax — 7 _ b
()
1 — ™ Ptmax — <1 + %)2 ; :
()
1 — ¢ 2Btmax — 1+25%+%_1
(o5
1 — ¢ 2Ptmax — Q'BUO 2
(1 + 51)())
/.tmax( thf _ 1 — e 2Btmax _ i [25550 n o2
| 7 e
. 7 (ro+8)
Bvg

1 — eiﬁtmax — 1 _ 6—5(%1n(1+ g

1 _eflgtmax — 1 —e

111(1—}-%)71

11
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-1
o1 (1422)

g
I S S
T
1 — ¢ Ptmax — (1 + %) 1
(+5%)
1 — ¢ Ptmax — (%)
(+5)
1-— e_fgtmax — (/Bgﬂ) — (%) Yo

(%) Sl+s) (w3

Lo Twrg)
IR
Vo
3o+ )

—BmM g [Qﬁ%Jr%} _2M9%+<92>1n<1+ﬁw)>
B) |26 M B /35M e g

B 2+5
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1.4 Questao 44 - Péndulo Fisico

Um péndulo fisico constituido por uma placa fina e homogénea em forma de um setor
circular de raio R e angulo central «a, esta suspenso verticalmente no centro O do disco
de origem. O péndulo é deslocado por um angulo 6 em relacao a vertical e, em seguida,
abandonado a partir do repouso para oscilar. A aceleracao local da gravidade é g e
possiveis atritos sao despreziveis. Assinale a alternativa que apresenta a expressao

correta para a frequéncia angular w de pequenas oscilagoes do péndulo fisico.

(A) w= \/g
(B) w— ISggcjc;séa)

(D) w— /4g3s;né&)

(B) w— 496;;(2/2)
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Solucao:

Para pequenas oscilagoes linearizamos sin f = 6 e usamos a equacao do péndulo fisico:

Io 0 +mght =0,

é+m—gh0=0,
Io

0+ w?0 =0,

onde Iy é o momento de inércia em relagdo ao ponto de suspensiao O (eixo
perpendicular ao plano) e h é a distancia do centro de massa ao ponto O.
1) Massa e momento de inércia:

Para uma placa homogénea em forma de setor, a densidade superficial o satisfaz
m=o0-area =0 (%Osz) .

O momento de inércia em relagdo a O (eixo perpendicular ao plano) é
(0% R aR4
I = a/ / 2 rdrdg = oo
0o Jo 4

m
Substituindo ¢ = —— obtemos
aRR?
om aR?* B mR?

IH = —
T GR? 4 9

2) Centro de massa (distancia radial h a partir de O):
O centro de massa de um setor circular encontra-se sobre a bissetriz e sua distancia ao

centro é

4R sin(a/2
L0

3) Frequéncia angular:
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4Rsin(a/2)
o fmeh M9 [Rgsina?)
Io mR? 3Rac
2

Portanto, a alternativa correta ¢ (C) .

1.5 Questao 45 - Colisao Unidimensional inelastica

Considere uma particula de massa m, que se move com velocidade vy, e realiza uma
colisao unidimensional inelastica com outra particula de massa M, inicialmente em
repouso. O coeficiente de restituicio do material constituinte das particulas é denotado
por . Considerando que a razao das massas das particulas é M/m = A, analise as
assertivas abaixo:

I. A velocidade da particula de massa m apds a colisdao é v = vo(1 — ) /(1 + ).

II. A velocidade da particula de massa M apds a colisao é V = vo(1 +¢)/(1 + ).

ITI. A razao entre a energia cinética adquirida pela particula de massa M e a energia
cinética inicial da particula de massa m é A(e +1)/(A+ 1).

Quais estao corretas?
(A) Apenas L.

(B) Apenas II.

(C) Apenas III.

(D) ApenasIe II

(E) I, II e III.

Solucao:

Pela conservagao do momento e defini¢cao do coeficiente de restituicao:

mug = mv + MV, V —v=c¢(vg—0) = evp.

Da segunda equacao temos V = v 4 cvy. Substituindo na conservacao do momento:

muy = mu + M (v + evg) = (m + M)v + Mewy.
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Isolando v:

m — Me 1— e

(m+ M)v = vo(m £) v vOm+M v01+)\,

o que confirma a assertiva I.
Agora V = v + evy:

1— e L= Ae+e(l+X) 1+¢

11 TE =" 14\ — T

V:UO

confirmando a assertiva II.

Para a assertiva III, calculemos a razao das energias:

Ky sMV?2 M(V)QZ)\(lJrg)?_ M1 +¢€)?

K, inicial %mv& m \vg 14+ m’
o A1 +¢) . )
que nao coincide com Erew (a dada na III). Portanto a assertiva III é falsa.

Assim, estao corretas apenas I e II.

A resposta correta é alternativa (D) .

1.6 Questao 47 - Oscilagoes acopladas

Dois blocos (1 e 2) de massas iguais a m = 0,5kg sdo conectados a trés molas que estao
posicionadas entre duas paredes, conforme ilustrado na figura abaixo. A constante
elastica das duas molas externas é k = 2,0N/m, e a constante eldstica da mola do meio
ko = 8,0N/m. As molas tém massa desprezivel e satisfazem a lei de Hooke. Sabe-se
também que quando os blocos se encontram simultaneamente em suas respectivas
posicoes de equilibrio, as molas nao apresentam qualquer deformacao. Considere que
z1(t) e x9(t) denotam os deslocamentos dos blocos da esquerda e da direita,
respectivamente, em relacdo as suas posigoes de equilibrio. No instante inicial ¢ = 0,
ambos os blocos 1 e 2 sdo soltos a partir do repouso nas posigoes z1(0) = 10cm e

x2(0) = 0, respectivamente. Assinale a alternativa que representa a posigao dos blocos

como funcao do tempo medido em unidades do sistema internacional.
(A) z1(t) = 0,05[cos(2t) + cos(6t)| m, xo(t) = 0,05[cos(2t) — cos(6t)] m

(B) z1(t) = 0,05[cos(2t) + cos(4t)| m, x5(t) = 0,05[cos(4t) — cos(2t)| m



k

e -

"
() ) A0
superficie horizontal i !

sem atrito

(C) z1(t) = 0,05 cos(3t) cos(t) m, wzo(t) = 0,05sin(3t) sin(t) m
(D) 21(t) = 0,10cos(4t) m, z5(t) = 0,10sin(2¢t) m

(E) x1(t) = 0,10cos(2t) m, x5(t) = 0,10sin(4¢) m

Solucao:

1) Equagbes de movimento: Para o bloco 1:
m.i"l = —k'.271 — k’o(.’lﬁl — Z’Q).

Para o bloco 2:

miQ = —]{3.132 — /{?0(372 — LEl).

k+ ko ko
Tl — — X9 = 0,
m m
k+ ko ko
To — —T1 = 0.
m

1+
=
To +

2) Matriz do sistema:

kE+ko —ko
—ko k4 ko

L L [0 8] 20 -6
0,5 -8 10 16 20 |

17
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3) Autovalores (modos normais):
det(A—X)=0 = (20— \)*—(-16)* =0,

(20— \)?2 —256 =0, = 20—\ = +16.

Logo, as frequéncias sao:
wlz\/Z:2, w2:\/%:6.
4) Autovetores: Para \; = 4:
(20 —4)zy — 1625 =0 = 1z = x9.

Para Ay = 36:
(20 — 36)1‘1 — 162, =0 = x; = —s.

Modos normais:
Modo 1 (freq. 2 rad/s): 1 = x9,

Modo 2 (freq. 6 rad/s): x1 = —xs.

5) Combinacgéo linear: Solugao geral:
x1(t) = Acos(2t) + Bcos(6t), x2(t) = Acos(2t) — B cos(6t).
6) Condigoes iniciais: No instante ¢ = 0:

A=DB=0,05.

7) Solugao final:

z1(t) = 0,05[cos(2t) + cos(6t)] m, xo(t) = 0, 05[cos(2t) — cos(6t)] m.



19

A resposta correta ¢ a alternativa (A) .

2 Gravitacao

2.1 Questao 46 - Balanca de torcao de Cavendish

No experimento de Henry Cavendish, de 1797, foi utilizada uma balanga de tor¢ao para
determinar o valor da constante gravitacional G da lei da gravitagdo universal de
Newton. Considere uma balanca de tor¢gado composta por uma barra de massa
desprezivel e comprimento L, suspensa horizontalmente pelo seu centro por um fio de
torcao vertical. Duas pequenas esferas de massa igual a m estao presas em cada
extremidade da barra. No primeiro passo do experimento, observa-se que, quando a
barra ¢ girada com um pequeno angulo, torcendo o fio, e depois solta, o péndulo de
torcao resultante sofre movimento harmonico simples com um periodo 7. Em seguida,
ap6s o péndulo ser parado e estar em sua posicao de equilibrio, um par de esferas
grandes de massa igual a M sao colocadas em lados opostos da barra, cada uma
proxima a uma das massas m. Devido a atracao gravitacional apenas entre cada par de
massas, a barra é observada girando por um pequeno angulo 6 e depois parar nessa
posicao, com cada massa M a uma distancia D da massa m correspondente. Determine

uma expressao para G em termos das variaveis dadas no problema.

espelho para medicdo do
angulo de rotagdo da haste

<« fio de torgdo

w2 D?L20
(A) &= MT?

212 D24
©) G = 42 D% 20
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2 D?L0
D =
(D) & mT1?

2 D?L0
(B) &= AmT?
Solucgao:

1) Constante de torgao via o periodo. Para pequenas oscilagoes, o péndulo de

I Am?]
T=2m/— = = .
7r\/ K " T2

A barra é desprezivel e ha duas massas m a L/2 do eixo, logo

torcao satisfaz

/o (L)2 mL? N An? mL?*  2m®mlL?
= m —_ _= K = = .
2 2 T2 2 T2

2) Equilibrio com as massas M. A forga gravitacional entre M e m é

B GmM

F fo

Cada forga produz um torque de médulo F' - (L/2) em torno do centro; sao duas forgas

simétricas, portanto o torque gravitacional total vale

Tg:2F(§) —FL.

No novo equilibrio, o torque elastico do fio 7,, = k6 (para pequeno 6) equilibra o

torque gravitacional:

GmM
RO=FL==21L
3) Isolando G. Substituindo x:
2m2m L? GmM 2m2D?L 0
T TR A Vi

A resposta correta ¢ a alternativa (B) .
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2.2 Questao 48 - Médulo da velocidade de um satélite orbitando a Terra

Um satélite artificial orbita a Terra em uma trajetéria eliptica sob efeito apenas da forca
gravitacional. O satélite passa pelo perigeu P (ponto mais préximo a Terra) com
velocidade @, e pelo apogeu A (ponto mais afastado da Terra) com velocidade o,. A
velocidade do satélite em um ponto Y, localizado na linha que passa pela Terra e
perpendicular ao eixo maior da elipse, é denotada por #. E correto afirmar que o médulo

da velocidade v no ponto Y, em termos de v, e v, , é expresso por:

Vg + U
Ay v="22
(A) v="01
20,
(B) v = VaUp
Vg + Up
(C) v = \/U,0,
v 402
D) v = 42
D) v =/
20202
_ a-p
() v= v2 4+ v?
a P
Solucao:

Considerando a orbita eliptica com foco na Terra, usemos a equacgao de vis-viva e a

conservagao do momento angular. Denotando por up = GM,

2 1
ru-l)
r a

onde r é a distancia ao foco (Terra) no ponto considerado e a é o semieixo maior. Para o



perigeu (7,) e apogeu (r,) temos

Subtraindo (20) de (19) obtemos

1 1 v —0?

Tp Ta

O ponto Y corresponde ao angulo verdadeiro 6 = 7, portanto
a(l —e?) 2
r =a(l—e
YT 140 ( )

Usando a relacao entre os raios de perigeu/apogeu e a (isto é, r, = a(l —e) e

ro = a(l + e)) obtemos
L a  rptr,

Ty Tpra 2rpre

Agora escrevemos a velocidade em Y via vis-viva (usando a expressao em r, e

eliminando 1/a):

1 1
v§:v§+2u<—>.

Ty Tp
1 1 T, — Tq
Substituindo g e — — — = -2 temos
Ty Tp 2rprg
T Ty, — T 1

2 2 2 2y Tpla P a 2 2 2
vy = v, + (v, — v . =v. — —(v; —v5).
Y P ( P a)ra _ Tp 27’p7“a p 2( P a)

Portanto
2 2
2 Up + Ua
vy = 7
e
v2 4 02
Vy = P
2

Resposta: alternativa D .

22
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3 Termodinamica

3.1 Questao 49 - Variacao de Entropia Total

Em um recipiente de capacidade térmica desprezivel e termicamente isolado, uma
quantidade de dgua de massa m4 = 80 g encontra-se inicialmente a temperatura

T4 = 60°C. Um cubo de gelo com massa mp = 20 g a Ty = 0°C é introduzido no interior
do recipiente. Sabe-se que o calor especifico da dgua é ¢ = 1.0 cal g7! °C~! e o calor
latente de fusao do gelo a 0°C é L = 80 cal g~!. Qual é a variacdo de entropia total do

sistema, ao atingir o equilibrio térmico, em unidades de cal - K17

(A) 201n<305> — 80 ln<333>

273 305
(B) 201n<2§;> — 80 ln<§)§?>
(C) 8207030 + 100 ln<2§§> — 100 ln(iéi)
(D) 1267030 + 20 ln(i%) —80 ln(?j?)
(E) 12670; + 20 ln(;)gg) —80 ln(gﬁg)
Solucao:

Calculemos a temperatura de equilibrio 7% pelo balango de energia:
mac(60 —Tf) = mpL + mpe(Ty —0).
Substituindo m4 = 80, mg = 20, c =1, L = 80:
80(60 —T¢) =20-80+ 207y = 4800 — 807 = 1600 + 207

= 1007 = 3200 = Ty = 32°C.
Usando temperaturas absolutas Tx = T'(°C) + 273:

e Agua: de 333 K a 305 K

305 305
ASégua BN yxe 1n<333> =80 11’1(333) .
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« Gelo (fusdo a 273 K + aquecimento de 273 a 305 K):

mpL  20-80 1600

A usdo — y
S 273 273 273
305 305
A — In( =) =20In( 2.
Saquec = MpC n(273> 0 n<273>

Somando todas as contribuicoes:

1600 305 305
ASip = —2 201() 801 ().
total = orgm AU 5og ) 80N 349

Reescrevendo o tltimo termo com sinal negativo:

1600 305 333
ASppg = —2 201()-—801().
total = orgm AU 578 "\ 305

A resposta correta é alternativa (E) .

3.2 Questao 50 - ciclo termodinamico: gas de fétons

Processos termodinamicos podem ser estendidos a particulas relativisticas, como um gas
de fotons. Considere uma radiacao eletromagnética inicialmente confinada em uma
cavidade de volume V', a qual esta em equilibrio térmico com as paredes da cavidade a
uma temperatura 7. Essa radiagdo se comporta como um gas de fétons, cuja energia

interna é dada por
4o

C

U VT,

onde ¢ é a constante de Stefan-Boltzmann e ¢ é a velocidade da luz no vacuo. A pressao

P do gas de fétons é um tergo da densidade volumétrica de energia u = U/V, ou seja:

4o
P=_—T"
3c
Esse gés de fotons ¢é utilizado como substancia de trabalho em um ciclo termodinamico
(ABCDA), composto por dois processos isobéricos e dois processos isocéricos, conforme
ilustrado no diagrama P vs. V fornecido (retdngulo com vértices

AV, Ry), B(Vy,25), C(2Vh, 2Fy), D(2Vg, B)). Calcule a eficiéncia n do ciclo para o gas

de f6tons.
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(A) n=9,0%
(B) n=12,5%
(C) n=14,3%
(D) n=154%
(E) n=25%
Solucgao:
. . 4oy 40y oy 4
Para o gas de fotons temos U = —V1T* e P = 3—T . Eliminando T*:
c c
P 4
T = P com a = —U,
a c

3P
U=aVT*=aV— =3PV.
a
Logo U = 3PV.
Calculemos U em cada vértice (em unidades de PyVp):

Us = 3RV, Up = 3(2P)Vy = 6PV,

Uo = 3(2R)(2V;) = 12PVo,  Up = 3Ry(2V0) = 6PVs.

Trabalho liquido do ciclo Wi ¢ a area do retangulo:
Wiq = 2F — Ry)(2Vo — Vo) = BoW.

Agora os calores absorvidos (processos com ) > 0):

1. A — B (isocérico): Wap =0, AUsp = Up — Uy = 6P,V — 3P,V = 3P V. Assim
Qap = 3P W.

2. B — C (isobérico a P = 2F): AUpc = Ue — Up = 12P,Vy — 6Py Vy = 6P, V5.
Trabalho Wge = PAV = 2B5y(2Vy — V) = 2R V. Logo

Qpc = AUpc + Wpe = 600Vo + 2RV = 8 Vo.
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Os outros processos C'— D e D — A liberam calor (@ < 0), portanto o calor total
absorvido é

Qin = Qap + Qpc = 3R Vo + 8RRV = 11 R)V.
Portanto a eficiéncia do ciclo é

Wy BV 1 _
= On 1RV, 11 ~ 0,0909 = 9,09%.

Ui

A resposta correta é alternativa (A) n=9,0% .

4 Eletromagnetismo

4.1 Questao 51 - Equagoes de Maxwell no Vacuo

No artigo intitulado “A Dynamical Theory of the Electromagnetic Field”, de 1865,
James Clerk Maxwell formulou inicialmente 20 equagoes para descrever os campos
elétricos e magnéticos na natureza. Foram Oliver Heaviside e Heinrich Hertz que, duas
décadas apos a morte de Maxwell, as simplificaram em quatro, conhecidas hoje como:
Lei de Gauss para eletricidade, Lei de Gauss para magnetismo, Lei de Faraday e Lei de
Ampere-Maxwell. Essas equagoes relacionam os vetores campo elétrico e campo
magnético e suas fontes, como cargas elétricas e correntes. Considerando as quatro
equagoes de Maxwell, é possivel demonstrar que campos elétricos E (7, t) e magnéticos
B (7,t) dependentes do espago e tempo, no espago vazio, satisfazem equagoes de onda,
cuja velocidade de propagacao ¢ dada por 1/,/Jig€g, onde €¢ e jiy sao a permissividade
elétrica e a permeabilidade magnética do vacuo, respectivamente. Sobre esse conjunto de

equagoes, assinale a alternativa INCORRETA..

(A) A lei de Gauss para eletricidade estabelece que cargas elétricas estaciondrias
produzem um campo elétrico, e o fluxo desse campo, ao passar por qualquer

superficie fechada, é proporcional a carga total contida nessa superficie.

(B) A lei de Gauss para o magnetismo estabelece que o fluxo magnético total que
passa por qualquer superficie fechada ¢é zero. Do ponto de vista experimental, esta
equacao descreve que as linhas de forca do campo magnético nao convergem nem

divergem de nenhum ponto no espaco, o que implica diretamente na auséncia de
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polos magnéticos isolados (monopolos magnéticos) na natureza.

(C) A lei da indugdo eletromagnética, descoberta por Michael Faraday em 1831, em
uma série de experimentos, afirma que a integral de linha do campo elétrico em
torno de uma curva fechada C' é igual ao negativo da taxa de variagao temporal do

fluxo magnético através de qualquer superficie S limitada pela curva C.

(D) A lei de Ampere-Maxwell afirma que a integral de linha do campo magnético em
torno de qualquer curva fechada C' é proporcional a soma da corrente elétrica de
conducao e da corrente de deslocamento através da superficie S' limitada pela

curva C.

(E) As equagdes de onda do campo elétrico e magnético sdo invariantes por
transformacao de Galileu entre as coordenadas espaco-tempo de dois referenciais

inerciais.

Solucao:
A resposta correta ¢é alternativa (E) .
Explicacdo detalhada (alternativa a alternativa):

(A) — Correta.

Forma integral da Lei de Gauss (eletricidade):

\% E . dA — QEDC’
S o
e forma diferencial:
v.-E="
€o

Isto significa exatamente que o fluxo do campo elétrico através de qualquer superficie
fechada é proporcional a carga total contida no volume delimitado por essa superficie. A

alternativa A descreve corretamente a lei.

(B) — Correta.

Lei de Gauss para o magnetismo (integral):

(%BdA:Q
S
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e diferencial:

V-B=0.

Isso expressa que nao ha "fontes" ou "sumidouros' para B: as linhas de campo
magnético sdo continuas (lagos fechados) e nao existem monopolos magnéticos

observados. A descricao da alternativa B esta correta.

(C) — Correta.
Lei de Faraday (forma integral):

fE.dlz—d/B-dA,
c dt Js

ou diferencial:

0B
VXE——E.

Isto corresponde exatamente ao enunciado: a forca eletromotriz ao longo de uma curva
fechada é o negativo da variagdo temporal do fluxo magnético pela superficie limitada.

A alternativa C estd correta.

(D) — Correta.
Lei de Ampere-Maxwell (integral):

d
§ Bdl = polene + prozoy; [[B-dA,
c dt Js

ou diferencial:

OE
V X B = poJ +Mo€oa-

A inclusdo do termo ppeo0E/0t (corrente de deslocamento) foi essencial para a
consisténcia matematica e fisica das equacoes e para permitir equagoes de onda para E e

B. A alternativa D esta correta.

(E) — Incorreta (explicagdo detalhada).
As equacoes de Maxwell no vacuo levam as equagoes de onda para os campos elétrico e

magnético, por exemplo (forma escalar 1D para ilustrar):

R 1P 1

0x? 2 Ot? - ¢ ,/[LQEO'
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Essas equagoes de onda ndo sao invariantes sob transformacoes de Galileu. A
transformagao galileana entre dois referenciais que se movem com velocidade v (no eixo
x) é

¥ =x — ot t' =t.

Aplicando a regra da cadeia:

Logo
62 B 82 82 ) 82

oz o Voraw T amn

Substituindo na equagao de onda obtemos termos mistos 9/(9t'dz’) e um coeficiente
diferente no termo 9%/9x"*; o operador da onda nao preserva sua forma original salvo

nos casos triviais v = 0 ou ¢ — o0. Escrevendo:

0? 1 ([ 0? 0? , 07 0? 1 02

g2~ & (aw " oror T 5’x’2> 7 o T 2o

Portanto a equagao de onda muda de forma sob a transformacao galileana — nao é
invariante.

Fisicamente, isso reflete que Maxwell prediz uma velocidade de propagacao ¢ da luz que
é a mesma em todos os referenciais inerciais — este fato é incompativel com a adic¢ao
simples de velocidades postulada pela transformacao de Galileu. A resolucao historica
dessa contradicao levou as transformagoes de Lorentz e a teoria da relatividade restrita
de Einstein: as equagoes de Maxwell sdo invariantes sob transformagoes de Lorentz, nao

sob Galileu. Assim a alternativa E estd errada.

Conclusao: a tunica alternativa incorreta é a porque as equagoes de onda (e, em
geral, as equagoes de Maxwell) ndo sdo invariantes sob transformacgoes galileanas — elas

exigem invariancia de Lorentz.

4.2 Questao 52 - Lei de Gauss para Eletricidade

Uma carga elétrica pontual ¢ > 0 se encontra no centro geométrico de uma superficie
gaussiana cilindrica de altura 2L e raio a. Sabendo que ¢y é a permissividade elétrica do

meio em todo o espaco e que as grandezas sao expressas no sistema internacional de
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unidades, analise as assertivas abaixo:

I. O fluxo total do vetor campo elétrico na superficie gaussiana cilindrica é dado por
q

271'60 RL .

IT. Os fluxos elétricos do vetor campo elétrico através de cada uma das superficies

circulares superior (¢) e inferior (¢2) do cilindro sdo dados por:

q L
=¢pg=—|1l— ——|.
o =tn= 5 (1 )
ITI. O fluxo elétrico ¢3 através da superficie lateral do cilindro é dado por:

q a

Y, 2
Quais estao corretas?

(A) Apenas L.

(B) Apenas II.

(C) Apenas III.

(D) Apenas IT e III.

(E) I, II e IIL.

Solucgao:
Analisemos cada item.
Total de fluxo (verificagdo de I). Por Teorema de Gauss, o fluxo elétrico total

através de uma superficie fechada que envolve a carga pontual g é

(Dtotal =
€0
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A expressao dada em I, nao tem dimensao nem forma compativel com ¢/&.

7
27T€0RL’
Portanto I é falsa.

Fluxo através de uma tampa circular (verificacao de II). Considere a tampa

circular superior: a carga esta no eixo, a distancia L do plano da tampa, e a tampa tem
L

—. 0

raio a. A semi-angulo sélido 6 que a tampa subtende satisfaz cosf =

angulo sélido 2 subtendido pela tampa (vista da carga) é

L

O fluxo através da tampa ¢é a fragao Q/(4m) do fluxo total ¢/ey:

L
b=t _ 1 2W<1_VL2+G2>— : (1 . )
1= = - 5|1 :

B VIZ+a?

€0 ‘ E N €0 47 250

Como a tampa inferior é simétrica, ¢o = ¢1. Logo a expressao em II esta correta; IT é

verdadeira.

4y L
¢1—¢2—2€0<1 m)

Fluxo através da superficie lateral (verificagdo de III). O fluxo lateral ¢3 é o

fluxo total menos o fluxo pelas duas tampas:

q q L q L
< :(poa —2 :——2-7 1_7 = — F —
75 toal = 201 €0 2e0 ( VL2 + a2> g0 VLI?+a?

q L

5= Ve

L
Portanto o valor correto é ¢3 = q , nd3o o dado em III (que tem a no

g0 vV L? + a?
numerador). Assim III é falsa.

Conclusao: apenas a assertiva Il esta correta.

A resposta correta é alternativa (B) Apenas II .
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4.3 Questao 53 - Lei de Ampere

Uma espira retangular com lados a e b encontra-se situada no mesmo plano, a uma
distancia D de um fio retilineo muito longo, conforme a figura. Sabe-se que no intervalo
de tempo 0 <t < T o fio conduz uma corrente elétrica que varia linearmente com o

tempo de acordo com a funcao

1(t):10<1—;),

onde I representa a intensidade da corrente no instante de t = 0. A constante de
permeabilidade magnética do meio é g, € o fio e a espira retangular estao fixos em suas
posicoes. Desconsiderando os efeitos de autoindutancia, determine o médulo da forca

eletromotriz induzida £(t) na espira retangular para o intervalo de tempo 0 <t < T.

” b 5 espira
- retangular
condutora

a

v

A
D I

v —

fio condutor retilineo—"

(A) |E(t)] = toablo

2r DT

(B) £(t)] =22 1n (14 4)

(C) [£(1)] = tble (1 — L)
(D) () =12 (1— L) In (1+ &)

(E) |E(t)] = st (1 £) (L — 1))

Resolucgao

O fluxo magnético g através da espira devido ao fio retilineo é dado por:

(I)B(t):/. B-ds.
espira
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O campo magnético de um fio retilineo infinito é:

B(r,t) = 'u;fr(:)

Y

onde r é a distancia perpendicular ao fio.

Para uma espira retangular, integramos ao longo da dire¢ao a (altura da espira):

(I)B(t) -

D+a D+a I(t bl(t D+a
| Berovdr=v [ 8 (1) gy — 1o ()/ =
D r

D D 2rr 27

O resultado da integral:

_ pobl (t) I (D—i—a) _ obl (t) In <1+ a)l

O
5(1) o D o D

A forga eletromotriz induzida na espira é dada pela lei de Faraday:

_ o ( aymﬂ
‘ 27Tln 1+D |

EQ):‘_déBaw

dt

Como I(t) = I (1 - %), temos:

Substituindo na expressao da FEM:

bl ( a)
E(t) = or T In 1+D :

Conclusao

O médulo da forca eletromotriz induzida na espira retangular é constante e dado por:

I
5(t):l;(fToln(l+?)>.

Portanto, a alternativa correta é B .
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5 Optica Geométrica

5.1 Questao 54 - Lente Convergente

Uma lente delgada convergente de distancia focal f é colocada entre uma fonte luminosa
e um anteparo, que estao fixos e separados por uma distancia L, com L > 4f. Qual ¢é a
expressao para a distancia entre as duas posig¢oes da lente que formarao imagens reais

nitidas da fonte sobre o anteparo?

fonte anteparo
luminosa lente \

-

IS
y

(A) L/2
(B) VIZF 2L
(C) VITFAIL
(D) V7= 2L
(E) VIZ—4/L

Solucgao:

Seja p a distancia objeto-lente (da fonte até a lente) e ¢ a distancia lente-imagem (da
lente até o anteparo). Como fonte e anteparo estdo separados por L e a lente fica entre
eles, temos

p+q=L.

A equacao da lente delgada é

=
i)
()
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Substituindo ¢ = L — p:
1 1 L

+ = .
p L—p pL—p)

Multiplicando ambos os lados por p(L — p):

| =

p(L—p)=fL.
Isso resulta na equagao quadratica
pP—Lp+ fL=0.

As raizes desta equagdo (as duas posigdes possiveis da lente que formam imagem nitida

no anteparo) sao

L+ IT—4ifL
. .

P12 =

A distancia entre as duas posicoes da lente é

Ap = ‘pl—p2| = \/L2_4fL-

Portanto a alternativa correta é a (E) .

6 Interferéncia e Difracao

6.1 Questdo 55 - Fibras Opticas

O uso das fibras 6ticas é uma das principais aplicagoes tecnoldgicas da éptica na area de
comunicagoes. Fibras cilindricas finas de vidro ou plastico podem ser usadas para
transmitir sinais ao invés de fios metdlicos. A grande vantagem estd na largura de banda
disponivel quando o portador sao ondas eletromagnéticas. Isso permite que uma fibra
carregue muito mais sinais independentes diferentes do que um fio condutor. Existem
também vantagens em termos de peso e independéncia de recursos limitados. Considere
uma fibra éptica composta por um ntcleo de vidro fino com indice de refragao ny,
cercado por uma camada de revestimento de menor densidade com indice de refracao

n, < ny. O indice de refracao do ar é denotado por nj. Assinale a alternativa que

expressa corretamente o angulo de incidéncia méaximo (6,,) que qualquer raio que incida
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na face de entrada seja guiado dentro da fibra por reflexdes internas totais sucessivas.

camada de
revestimento

nicleo da fibra

Solugao:
Para guiar por reflexdes internas totais, o raio dentro do niicleo deve atingir a interface
nicleo-revestimento com um angulo de incidéncia igual ao minimo permitido (dngulo

s . n ~ . .
critico) 6, com sin . = —. Em termos do angulo #' que o raio faz com o eixo da fibra, a
ny
condigao limite é 6/ . = 90°

n\ \/”%_"3
sinf  =cosf.=1/1—sin?f,=,1—|—] =Fr——.
ny

nf

— 0., portanto

Na face de entrada, pela lei de Snell ngsin 6, = nysin#’. Substituindo sin’ =sin#@; .

obtém-se
n%—-nz2 1
. nf f r B 5
sinf,, = - - +—— = — n; —nz,
Un ny Un

logo

1
_ : 2 _ .2
0,, = arcsm(no./nf nr) )
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A resposta correta ¢ alternativa (A) .

6.2 Questao 57 - Interferéncia da Luz

No trabalho intitulado “Uso do espelho de Lloyd como método de ensino de éptica no
Ensino Médio” (Revista Brasileira de Ensino de Fisica, 2012), os autores propdem uma
abordagem para o ensino de 6ptica, com énfase na aplicacao de conceitos basicos sobre o
fendbmeno da interferéncia da luz. Foi utilizado o experimento denominado “espelho de
Lloyd”, que oferece uma ligacao mais simples entre a optica geométrica e a Optica fisica,
sendo muito mais acessivel do que a experiéncia das duas fendas de Young, segundo os
autores. No procedimento, um padrao de franjas de interferéncia é observado usando-se
luz emitida por uma fonte coerente, como um laser, e a luz refletida por uma placa de
vidro (figura a). O padrao de interferéncia é projetado em um anteparo. As distancias
entre a fonte luminosa em relagdo ao plano da placa de vidro e o anteparo sao,
respectivamente, d = 1,0 mm e D = 2,0 m (figura b). Durante a realizagao do
experimento, foi registrado um padrao de interferéncia (figura ¢) com 14 franjas por
centimetro.

Qual é o valor do comprimento de onda A da luz que foi medido, levando em

consideracao as informagoes fornecidas?

A
F
2d TIITIAY 7. 7
P
(a) Montagem experimental (b) Esquema do (c) Aspecto geral das franjas
do espelho de Lloyd. espelho de Lloyd. de interferéncia observadas.

Fonte: Revista Brasileira de Ensino de Fisica, v. 34, n. 4, 4.310 (2012).

(A) 660 nm.
(B) 680 nm.
(C) 710 nm.

(D) 750 nm.
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(E) 780 nm.

Solucao:

No arranjo de Lloyd, a franja de interferéncia observada no anteparo é similar a obtida
por duas fontes separadas por 2d (a fonte real e a imagem especular). Para pequenas
inclinagoes (parametro de aproximagao de Gauss) a separacao entre franjas sucessivas

(franja brilhante para a préxima franja brilhante) é dada por

XD
b=

Da observacao temos 14 franjas por centimetro, portanto a distancia entre franjas é

1 cm 0,01 m
f— p— ’ f— 142 ]_ _4 .
15 4 4 7,142857 x 107" m

Isolando A na expressao para [3:
_2dp
=5

A
Substituindo os valores numéricos (d = 1,0 mm = 1,0 x 1073 m, D = 2,0 m):

2 (1,0 x 1073) (7,142857 x 10~%)
2,0

A= = 1,0x1073x7,142857x 107 = 7,142857x 10" m.

Em unidades nanométricas:

A~ 7,14 x 107" m = 714 nm.

Comparando com as alternativas apresentadas, o valor mais proximo ¢ 710 nm
(alternativa (C)).

A resposta correta ¢ alternativa (C) 710 nm .

7 Relatividade

7.1 Questao 56 - Transformacao de Lorentz

Seja R um referencial inercial e R’ um referencial inercial que se move em relacao a R,

com velocidade constante ¥ = ¢k, na qual ¢ é a velocidade da luz no vacuo e |B] <1 é
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um parametro adimensional. Os eixos x,y, z de R sdo paralelos aos eixos 2',v/, 2’ de R/,
e as coordenadas espago-tempo estao relacionadas entre si através da transformacao de
Lorentz. Sabe-se também que as origens O e O dos referenciais R e R’ sao coincidentes
Uy explikos(z,1)],

=x+ctep_(x,t)

nos instantes t = ¢ = 0. Considere as fung¢oes de onda Vo (x,t) =
onde k é o vetor de onda e os comprimentos ¢4 sao ¢ (x,t) =1x — ct.
E correto afirmar que no referencial R’ as grandezas @', e ¢'_ estdo relacionadas através

da seguinte forma, respectivamente:

(A) ¢ =04(1+5) o oL =6.(1-0)
(B) ¢, =6(1-0) o &=6.(1+)
©) ¢ =onfiry o ¢ =0l
A e I AT e
(B) 0 = s(0n = 36) © 0 = (6 + PO

Solucao:

Usando as transformacoes de Lorentz,

¢, =’ +ct' =y(x — Bet) + ¢y (t—ﬁi)

= [0 =B+ (1= B)ct] = 4(1 = B) (x +ct) = 7(1 = B) ¢
Analogamente,

¢ =o' —ct' =~(x — Bet) _67( Bi)

= |1+ B)z = (1L+B)ct] = y(1+ B) (z — ct) = y(1+ B) .

Como (1 — ) = \/11__7552 = ,lilg ey(1+8) = Hijg, obtemos exatamente a

alternativa (C).

A resposta correta ¢ alternativa (C) .
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7.2 Questao 58 - Energia-Momento Relativistica

Um experimento simplificado para verificar a relagdo energia-momento relativistica de
particulas beta emitidas por uma fonte radioativa foi proposto recentemente por D.
Jackson et al. no American Journal of Physics, 92, 775 (2024). No aparato
experimental, as particulas beta, de massa de repouso mg e carga elétrica ¢, sao emitidas
por uma fonte de 2°4T1 (t4lio-204) e, em seguida, passam por um colimador de ago que
direciona suas trajetorias. Apos sairem do colimador, as particulas beta seguem
trajetérias (aproximadamente) circulares devido a um campo magnético uniforme de
intensidade B. Um colimador de aluminio conduz as particulas para um detector
Geiger-Miiller, que registra a chegada das particulas, permitindo a medi¢ao do raio R de
suas trajetorias. Seja K a energia cinética de uma particula beta incidente na regidao do
campo magnético e, considerando efeitos relativisticos, determine o raio R dessas

trajetorias é dado pela expressao:

caixa de acrilico
\n

e detector
fonte de 204TI Geiger-Miiller
2m0K
A —_ 2
W) R= [T
moK
B) R P STy
( ) (2q2BQ)
K(2moyc* — K)
C) R=
© \/ (¢Be)?

K(2moyc* + K)
(qBc)?

2K (moc® + K)
)= \/ (GBP
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Solucgao:

A forga magnética fornece a forca centripeta responsavel pela trajetoria circular:

pv
qu R

S
v

onde p é o momento relativistico da particula.

Relatividade special: a energia total é
E = ymoc2 = K + moc?,
e a relagao energia-momento é
E? = (pc)? + (moc?)?.
Isolando p obtemos
(pc)? = E? — (moc®)? = (K 4+ moc®)? — (moc?)? = K? + 2Kmyc?.

Portanto

VE?+ 2Kmyc? \/K (K + 2moc?)
p = — .
c

C

Substituindo em R = p/(¢B):

1 VK24 2Kmyc? \/K (K + 2moc?)
R = — —
qB c qBc

Escrevendo em forma equivalente (colocando o denominador (gBc)? sob o radical):

. K (2m062 + K)
= J (qBe)? |

Assim, a alternativa que coincide com a expressao correta é a (D).

A resposta correta é alternativa (D) .
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8 Mecanica quantica em trés dimensoes e atomo de Hidrogénio

8.1 Questao 59 - Modelo de Bohr para positronio

Recentemente, uma equipe de pesquisadores do CERN alcangou um avango importante
ao aplicar uma técnica inovadora de resfriamento a laser em uma amostra de positronio,
uma particula composta por um elétron (carga elétrica —e e massa m) e um positron
(antiparticula com carga positiva e massa semelhante & do elétron). Essa conquista
permite uma investigacao mais precisa das propriedades do positronio, abrindo
possibilidades para estudos fundamentais, como a produgao de condensados
Bose-Einstein de antimatéria e a geracao de luz gama coerente, o que poderia trazer um

leque de novas aplicacoes.

Atomo de hidrogénio Atomo de positronio
Elétron Elétron
Pésitron
Um atomo de hidrogénio é O positrénio tem um elétron com

composto por um préton com carga negativa e um positron
carga positiva e um elétron com positivo
carga negativa

Fonte: https://www.bbc.com/portuguese/articles/cpw7wnzld2qgo

Considerando o modelo de Bohr para atomos hidrogenoides, é correto afirmar que os
niveis de energia de um positrénio, em funcao do niimero quantico principal n, sao

dados por:
(A) B, = —34/n% &V
(B) E, = —6,8/n? eV
(C) E,=—13,6/n* eV
(D) E, = —27,2/n* eV

(E) E, = —25,0/n? MeV

Solucgao:
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No modelo de Bohr para um sistema de duas particulas (4&tomo hidrogenoide) as

energias estao dadas por
pet 1

By =
2(4meg)?h? n?

onde p é a massa reduzida do sistema. Para o hidrogénio (nicleo com massa muito

maior que m) tem-se pu &~ m, e portanto

B mee' 1 136

- — V.
" 2(4meg)?h? n? n? *

No caso do positronio, o sistema é formado por um elétron e um positron com a mesma

massa m,, entao a massa reduzida é

Me * Me MmMe

w2

Substituindo na expressao para FE, obtemos

E}js__(fme/z)e4 1 1(2(me4> L_ 1 1386 o

2(dmeo)2h2n? 2\ 2(4meo)2h2 ) n2 T 2 n?
Logo
EFs = 6—’? eV
n

Portanto, a alternativa correta é a (B).

A resposta correta ¢é alternativa (B) E, = —6,8/n” eV .

8.2 Questdo 60 - Atomo de Hidrogénio

O estado de um elétron em um atomo de hidrogénio, na representagao posicao

7 =2xT + yy + 22, é descrito pela funcao de onda normalizada a seguir:

1 T
Y(r) = M(m + By + 7z) exp <_2a0> :

onde ag é o raio de Bohr, r = v/22 + y2 + 22 e a, 3,7 sdo ntimeros reais que satisfazem
a? + 3% +~% = 1. O estado ¥(r) é uma superposigao das autofuncdes ¥, (r, 0, ¢) do
atomo de hidrogénio, para n = 2.

A tabela apresenta as autofunc¢oes normalizadas do atomo de hidrogénio em

coordenadas esféricas (1,0, ¢) para os orbitais com n = 2:
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Estado (n,l,m) Fungdo de onda
(2,0,0) Yano(r, 0, 6) = (1— ) e/
(2,1,0) Yo10(r, 0, 0) = \/;r—agﬁe’r/%o cos 6
(2,1,£1) or141(r, 0, 0) = :l:\/léTag (ﬁ) e~T/2a0 gipy fetie

Seja h = h/2m. Assinale a alternativa correta que representa a probabilidade de uma

medida de L, resultar +h.
(A) P(L.=+h) = 3(a® + %)
(B) P(L, =+h) = o+ °
(C) P(L.=+h) = 3(a® = §?)
(D) P(L. = +h) = a® - §°

(E) P(Lz = +h) = 72

Solucgao:

A funcao de onda dada pode ser reescrita em coordenadas esféricas. Usando:
xr=rsinfcos¢p, y=rsinfsing, z=rcosb,

obtemos

W(r,0,¢) = exp (—2T> [asin @ cos ¢ + [Fsin @ sin ¢ + 7 cos ] .

Qo

r
\/32ma]

Comparando com as autofuncoes da tabela, vemos que:

o10(7, 0, @) I emr/2a0 gog 9,
Qo

r .
o141(r, 0, @) x — 7 T1290 gin Pt
Qg

Podemos escrever:

a—1ip + 1

. «
sin fet® + ——

asinf cos ¢ + fsinfsin g = sin fe =,
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Assim, o estado é uma combinagdo linear:

W~ a0 + a\;—;ﬂ?ﬁm,l + a\—/i_—;ﬁ@ﬁm,—l-

Portanto, o coeficiente da autofungao ;1 (que corresponde a m = +1, logo L, =

a—1if
Ci1 = \/§ .

A probabilidade é
1
P(L = +h) = [eni* = 3(a® + 72).

Logo, a alternativa correta ¢ a (A).

A resposta correta é alternativa (A) P(L. = +h) = 5(a® + 3?) .

+)
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Problema. Um péndulo de massa my e comprimento L é solto do repouso na posicao
A, que faz um angulo € com a vertical. A corda passa por uma roldana ideal e traciona
um bloco de massa my sobre uma mesa horizontal. Ao o péndulo atingir o ponto mais
baixo B, qual deve ser o menor coeficiente de atrito estatico us entre m; e a mesa para

que mq nao deslize?

Solugao.

1) Velocidade do péndulo em B. Pela conservagao de energia entre A e B:
1
mogL (1 — cosf) = §m2v]23 = 0% =2gL (1 — cosh).

2) Tragao na corda em B. No ponto mais baixo, as forgas radiais no péndulo dao

2 2

Tr — mag :mQUfB = Tg :m2<g+vf> :mgg[l—l—Q(l —0039)] = mag (3 — 2cosh).

Como a roldana é ideal, a tragdo que puxa m, na horizontal é Tp.
3) Condi¢ao de nao deslizamento de my. Para m; permanecer em repouso, a forga de

atrito estatico maxima deve ser ao menos igual a tracgao:

fs,max = /’LSN = HsM19g Z TB-

Logo, o coeficiente minimo ¢é

s min = TZEL] = Z? (3—20059) .

Observacao: O ponto B é o ponto mais baixo da trajetoria, onde a tragdo é maxima;

portanto, se m; nao desliza em B, nao deslizard em nenhuma outra posicao.
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